Radiant Panel Systems

OSTERLING

INTRODUCTION

Radiant ceiling systems are an energy and cost saving heating method that provides comfortable, draft free temperature control. Product is based on the Frenger design. Frenger ceiling panels were the first to be certified and tested in Europe over 40 years ago.

Radiant ceiling systems provide warmth much the same way as the sun warms the earth. This radiant ceiling design is clean, draftless and allows essential wall space free for other uses besides cooling or heating units.

Utilizing water, the panels provide a wide range of heat outputs. The result is a comfortable heating system with design flexibility, low installation costs and ease of maintenance. Sterling's products have been installed in hundreds of commercial and institutional applications throughout Canada and the U.S.A. Because of the many advantages of ceiling installations, you will find them in hospitals, nursing homes, museums, schools, recreational and institutional facilities as well as the latest condominium and commercial designs. Where required, special security panels are available for a system that is virtually vandal-proof. Radiant panels are shipped assembled. Full design and layout capabilities are available to assist you in the layout and installation of your system.

SYSTEM DESIGN

Radiant panel system design is fundamentally similar to that of other perimeter heating systems. The design procedure is as follows.

- 1. Perimeter heat losses for the space are calculated using standard ASHRAE methods and good engineering practice.
- 2. Water temperature drop across panel system is calculated based on flow rate, hot water supply temperature and required heat output:

$$\Delta T = \frac{BTU}{GPM \times 500}$$

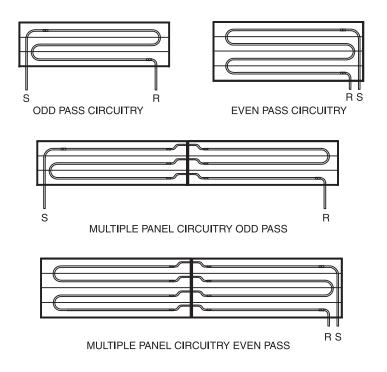
Where: ∆T is in °F Heat loss is in BTU's Flow rate is in GPM

- 3. Mean water temperature is determined by subtracting half of the temperature drop from the hot water supply temperature: t = hot water temp. - (0.5 x Δ T)
- 4. Use the mean water temperature value (t) found in step 3 and the appropriate rating table to determine the heat output of the panel in BTU's per lineal foot.
- 5. Determine the required panel width based on the output per panel found in step 4.
- 6. Determine panel configuration to suit the room floorplan. The following rules of thumb should be considered:
 try to supply 50% of the total perimeter heat required (as calculated in step 1) within 3' of the perimeter wall.
 - design piping configuration such that the hottest water is always supplied closest to the perimeter wall.
- 7. Circuit Design Piping

Circuit layout depends on several factors, such as building layout, supply and return piping location, number of panels in a given area, and desired piping pressure drop.

Using the tables in the specification section of style panel selected and desired circuit flow in GPM (typical flow through any circuit would be limited to a maximum of 3 GPM), it is possible to calculate the BTU load and number of panels on a circuit based on engineer's maximum allowable pressure drop (typically 2' to 7').

For example, for a linear panel project with a desired 2 GPM circuit flow rate, a 20° Δ T, and a maximum pressure drop of 5' per circuit, we can see that either 70' of tubing/max per circuit or:


 $\mathsf{BTU} = \frac{500 \text{ x } \Delta \mathsf{T}}{\mathsf{GPM}} = \frac{10,000}{2} = 5,000 \text{ BTU}$

Max. BTUH = 5,000 BTU/circuit

If a room contains 18" panels @ 180° AWT with 30' of panels in two 15' panels:

 \approx Max. 23' of 18" panel (340 BTU/lin. ft. and 3' of tube per lin. ft of panel)

Therefore, each 15' panel contains 45' of tube and 30' of panel (90' ft of tube) implies two circuits. Or, each 15' panel covers $15 \times 340 = 5100$ BTUs and is good for one circuit.

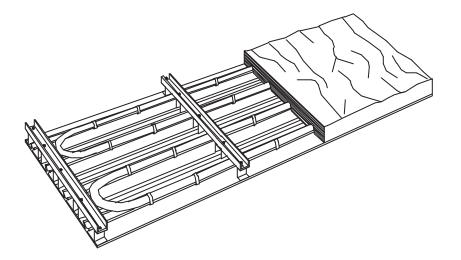
We provide design assistance. For assistance with complex applications or for in-depth information regarding radiant panel system design please contact our technical services department. Job project drawings showing panel layouts and piping are available for each individual project.

Linear Radiant Panel

TABLE OF CONTENTS

IADLL	JI CONTENTS
L-1	Description
L-2	General Specifications
L-3	Operation and Maintenance
L-4	System Design
L-5	Panel Outputs (Imperial)
L-6	Panel Outputs (Metric)
L-7	Radiant Panel Widths and Finished Openings
L-8	8" Wall Mount Panel
L-8B	16" Wall Mount Panel
L-9	Standard Castellated Linear Extrusions
L-10	Linear Curtain Track
L-11	Miscellaneous Linear Extrusions
L-12	Copper Connection Details
L-13	General Notes
L-14	Cutting Instructions
L-15	Linear Panel Expansion Details
L-16	Linear Circuitry and Pressure Drops
L-17	Interconnector Pressure Drops
L-18	Linear Panels in T-Bar Ceiling
L-19	Perimeter Panels With Column Interference
L-20	Piping Detail For Odd and Even Pass Linear Panels
L-21	Access Panels Where Accessibility is Required
L-22	Corner Details
L-23	Serpentine Circuiting Around Column
L-24	Installed in Perimeter T-Bar Ceiling
L-25	Installed in Interior T-Bar Ceiling
L-26	Sloped Linear Panel in T-Bar Ceiling
L-27	Linear Panels at Perimeter Wall in Gyproc Ceiling
L-28	Recessed Linear Panel in Gyproc Ceiling
L-29	Linear Panel Behind Bulkhead
L-30	Slot Diffuser in Linear Panel Behind Bulkhead
L-31	Framed Linear Panel
L-32	Surface Mounted Linear Panel
L-33	Vertical Linear Panel in Gyproc Wall
L-34	Surface Wall Mounted Linear Panel
L-35	Hanging Linear Panel in Exposed Area
L-36	Linear Panel in Exposed Area
L-37	Hanging Linear Panel in Exposed Area
L-39	Surface Mounted Linear Panel
L-40	Perimeter Channel Angle
L-41	T-Bar Clip
L-42	Radiant Panel Installation Instructions
LPIOM	Linear Radiant Panel Installation, Operation & Maintenance Instructions

DESCRIPTION


Linear panels are an established approach to radiant heating. The linear panel is an extruded aluminum radiant heating strip that provides exceptionally high heat transfer. Linear panels are available in virtually any width and length up to a maximum of 16'. This product, while offering an up-to-date visual appearance, is suitable for both ceiling or wall mounting. Linear panels are also available with a range of mounting accessories providing flexible setup.

ADVANTAGES

The system, being flexible, is easily designed into any heating scheme with few dimensional constraints. Installation is straightforward and, as found through independent tests, the heat output of linear panels is equal to or better than other radiant heating products.

APPLICATIONS

Linear panels can be used in hospitals, nursing homes, daycares, commercial office developments, schools, museums, security facilities, airports, churches, banks, condominiums, laboratories, swimming pools, factories and workshops.

GENERAL SPECIFICATIONS

Material Specification

Linear panel extrusions combine outstanding aesthetic quality with excellent design flexibility as individual planks can be fastened together to form panels of virtually any width.

The aluminum planks incorporate a tube saddle channel as an integral part of the profile. The tubing is clipped into this channel and held in direct thermal contact with the extrusion. A non-hardening heat paste between the tubing and the aluminum face plate ensures even heat distribution to the active face, providing overall thermal efficiency.

Panel planks are tongue-and-grooved to provide a clean joint longitudinally. They are held together using a special clipping system.

Dimensions and Weight

Linear panels can be provided in a variety of lengths of up to 16' and widths in multiples of 6". An operating weight of 2 lb/ft² should be used when calculating the requirements for clipping and suspension components

Materials of Construction

Pipework:	⁵ / ₈ " O.D. copper tubing.
Panels:	Extruded aluminum planks.
Panel joint clips:	Cadmium or zinc-plated steel springs.
Panel suspension clips:	Cadmium or zinc-plated steel springs.
Pipework clips:	Cadmium or zinc-plated steel springs.
Support channel:	Extruded aluminum $1^{1}/_{2}$ " x $^{3}/_{4}$ " x $^{1}/_{8}$ " thick.
Paint finish:	White polyester powder coating.
Suspension system:	Standard t-bar or drywall installation, the panels can be suspended with or without a
	frame for custom applications.
Insulation:	As per consultant's specifications, usually a minimum of 1" thick foil backed batt insulation.

OPERATION AND MAINTENANCE

Linear panels are incorporated into a building's heating/cooling systems and will remain trouble free provided the following procedures are followed and inspections performed during start up and maintenance.

Operation

Heating mains should be flushed prior to connection to the radiant panels. After connection, the hydronic system should be flushed again and then dry pressure tested to isolate any leaks. Any remaining air should be vented from the system and boiler temperature should be brought up gradually.

Maintenance

Apart from cleaning any strainers, little maintenance should be required on the pipework system. Any descaling of pipework should be carried out in the same way as for other hydronic heating systems. The panels are robust and should resist damage. If for some reason a panel has been damaged, the pipework should be inspected to ensure that no clips have been displaced and that extruded planks are still securely fastened.

Cleaning

The surface of linear panels is best cleaned using an industrial vacuum cleaner to remove dust. However, if the panels become soiled they can be cleaned using a damp cloth and mild detergent.

SYSTEM DESIGN (IMPERIAL)

Radiant panel system design is fundamentally similar to that of other perimeter heating systems. The design procedure is as follows:

- 1. Perimeter heat losses for the space are calculated using standard ASHRAE methods and good engineering practice.
- 2. Water temperature drop across panel system (T) is chosen, usually 20°F.
- 3. Mean water temperature is determined by subtracting (T/2) from the entering water temperature.
- 4. Determine the linear output required for the space by dividing the total required output by the available panel length.
- 5. Determine the required panel width and number of passes by consulting the radiant panel linear output chart on L-5.

FLOW RATE in GPM = <u>(BTU/ 500 (Weight of H2O)</u> Temp Drop (° F)

 $FLOW RATE = \frac{PANEL OUTPUT}{(T \times HEAT CAPACITY)}$

anel output, the temperature drop across ated using the following formula:

(T) is in °F Panel Output is in BTUH Heat Capacity is Btu/lb x °F Flow Rate is in gpm

7. The pressure drop across the panel system is dependent on the length of the panel cirucuit, the number of flexible interconnectors, and the **FLOW RATE in GPM = (BTU/ 500 (Weight of H2O)**

by the copper tubing can be four be found on page L-17.

Temp Drop (° F)

When designing a radiant panel heating job there are a few rules of thumb to keep in mind:

- try to supply 50% of the total perimeter heat required (as calculated in step 1) within 1m of the perimeter wall.
- design piping configuration such that the "hottest" water is always supplied closest to the perimeter wall.
- odd number of passes cannot be supplied and returned at the same end.
- even number of passes cannot be supplied and returned at opposite ends without the use of headers.

We provide a free design/consulting service. For assistance with complex applications or for in-depth information regarding radiant panel system design please contact our engineering department.

SYSTEM DESIGN (METRIC)

Radiant panel system design is fundamentally similar to that of other perimeter heating systems. The design procedure is as follows:

- 1. Perimeter heat losses for the space are calculated using standard ASHRAE methods and good engineering practice.
- 2. Water temperature drop across panel system (T) is chosen, usually 11°C.
- 3. Mean water temperature is determined by subtracting (T/2) from the entering water temperature.
- 4. Determine the linear output required for the space by dividing the total required output by the available panel length.
- 5. Determine the required panel width and number of passes by consulting the radiant panel linear output chart on L-5.
- 6. The required flow rate through the panel is based on the required panel output, the temperature drop across the system (T), and specific heat capacity of water. It can be calculated using the following formula:

 $FLOW RATE = \frac{PANEL OUTPUT}{(T \times HEAT CAPACITY)}$

(T) is in °C Panel Output is in Watts or (J/s) Heat Capacity is 4180 Watts/Litres x °C Flow Rate is in Litres/s

7. The pressure drop across the panel system is dependent on the length of the panel cirucuit, the number of flexible interconnectors, and the flow rate of the water through the panel. A table of the pressure drops created by the copper tubing can be found on page L-16, and the pressure drops for the flexible interconnectors can be found on page L-17.

When designing a radiant panel heating job there are a few rules of thumb to keep in mind:

- try to supply 50% of the total perimeter heat required (as calculated in step 1) within 1m of the perimeter wall.
- design piping configuration such that the "hottest" water is always supplied closest to the perimeter wall.
- odd number of passes cannot be supplied and returned at the same end.
- even number of passes cannot be supplied and returned at opposite ends without the use of headers.

We provide a free design/consulting service. For assistance with complex applications or for in-depth information regarding radiant panel system design please contact our engineering department.

LINEAR PANEL IMPERIAL OUTPUTS

PASS	SES	1	2	2	2	4	3	4	4	5	6
PANE WIDTI (INCH	HS *	6	8	10	12	16	18	20	24	30	36
	120	54	63	-	78	94	109	-	163	196	224
м	125	62	73	-	93	111	128	-	188	226	258
E	130	71	85	-	106	129	148	-	213	256	292
A N	135	79	94	-	121	147	166	-	238	285	327
	140	87	104	125	134	165	186	227	263	315	361
W A	145	96	114	137	149	185	205	245	288	345	394
T	150	104	124	151	162	202	225	264	313	375	428
ER	155	112	134	163	177	219	246	282	338	406	463
ĸ	160	121	145	177	190	238	263	301	363	436	497
Ţ	165	129	154	189	205	255	282	320	389	466	531
E M	170	137	164	203	218	276	302	340	413	495	565
Р	175	146	175	215	233	292	320	360	438	525	599
E R	180	154	186	229	246	312	340	380	463	555	633
A	185	162	197	241	261	329	359	404	488	586	668
T	190	171	207	255	275	348	379	427	513	615	702
U R	195	179	216	267	289	365	397	452	538	645	736
Ē	200	187	226	281	303	384	417	471	563	675	771
(°F)	205	195	236	293	317	401	436	490	588	705	805
	210	204	248	307	330	420	456	509	613	735	839
	215	212	258	319	345	439	474	527	638	764	874

OUTPUTS EXPRESSED IN BTUH/LINEAL FOOT OF PANEL AND ARE BASED ON 70°F ROOM TEMPERATURE. FOR EVERY 1°F DECREASE IN ROOM TEMPERATURE BELOW 70°F, THE OUTPUT INCREASES BY 0.9%. FOR EVERY 1°F INCREASE IN ROOM TEMPERATURE ABOVE 70°F, THE OUTPUT DECREASES BY 0.9%.

ANY PANEL WIDTH CAN BE CONSTRUCTED BY COMBINING 4" AND 6" EXTRUSIONS AND INTERPOLATING THE APPROPRIATE OUTPUTS.

*REFER TO PAGE L-7 FOR ACTUAL PANEL WIDTHS & FINISHED OPENINGS

Note: Table for ethylene and propylene 50/50 glycol also available upon request.

PASSE	S	1	2	2	3	4	3	4	5	6		
PANEL WI	DTHS	6" P.	ANEL	12" PANEL			18" PANEL					
	95	13	15	9	9	10	13	14	15	16		
	100	21	25	23	25	27	33	35	37	39		
	105	30	35	37	40	44	52	55	59	62		
M E	110	38	45	51	56	61	71	76	80	85		
Ă N	115	46	55	65	71	78	90	96	102	108		
	120	54	65	79	86	94	109	117	124	131		
WA	125	63	75	93	102	111	129	137	146	154		
A T E	130	71	85	107	117	128	148	158	168	177		
R	135	79	95	121	133	145	167	178	189	200		
T E	140 145	88	105	135	148	162	186	199	211	223		
E M P E R A T U R E	145	96 104	115 125	149 163	163 179	178 195	205 225	219 240	233 255	246 270		
E R	150	104	125	103	179	212	225	240	255	270		
Ą	160	113	135	191	210	212	263	281	298	316		
<u> </u>	165	129	155	205	226	246	282	301	320	338		
E	170	137	164	218	240	262	302	322	342	362		
(°F)	175	146	175	233	256	280	320	341	363	384		
	180	154	185	246	271	295	340	363	385	408		
	185	162	194	261	287	313	359	383	407	431		
	190	171	205	275	303	330	379	404	430	455		
	95	11	13	7	8	9	11	12	13	14		
M E	100	18	22	19	21	23	28	30	31	33		
A N	105	25	30	31	34	37	44	47	50	53		
	110	32	39	43	47	52	60	64	68	72		
5 0 /	115	39	47	55	60	66	77	82	87	92		
5 0	120	46	55	67	73	80	93	99	105	112		
	125	53	64	79	87	94	109	117	124	131		
E T H Y L E N E	130	60	72	91	100	109	126	134	142	151		
H Y	135	67	81	103	113	123	142	151	161	170		
E	140	74	89	114	126	137	158	169	179	190		
N F	145	82	98	126	139	152	175	186	198	210		
	150	89	106	138	152	166	191	204	216	229		
T E	155	96	115	150	165	180	209	223	237	251		
M P E R A T U R E	160	103	123	162 174	178 192	194	224	239	253	268		
R	165 170	110 116	132 140	174	204	209 222	240 257	256 274	272 291	288 308		
A T	175	124	140	198	218	238	272	290	308	326		
U R	180	131	143	209	230	250	289	308	328	347		
E	185	138	165	203	200	266	305	326	346	366		
(°F)	190	145	174	234	257	281	322	344	365	387		
м	95	12	14	8	9	9	12	13	14	15		
M E	100	19	23	21	23	25	30	32	34	36		
A N	105	27	32	33	37	40	47	50	53	57		
5 0	110	34	41	46	51	55	65	69	73	78		
/	115	42	50	59	65	71	82	88	93	98		
5 0	120	50	59	72	79	86	100	106	113	119		
	125	57	68	84	93	101	117	125	133	140		
R O	130	65	78	97	107	116	134	144	152	161		
P Y	135	72	87	110	121	132	152	162	172	182		
P R O P Y L E N E	140	80	96	122	135	147	169	181	192	203		
Ň	145	87	105	135	149	162	187	199	212	224		
	150 155	95 102	114	148	163 177	178 193	204 224	218	232 254	245		
Ē	155	102 110	123 132	161 173	177	208	224	239 255	254	269 287		
M P	160	110	132	173	205	208	239	255	271	308		
ER	170	125	141	198	203	224	201	293	311	308		
Å	175	123	150	212	233	254	291	311	330	349		
T E M P E R A T U R E	175	133	168	212	235	269	309	330	351	371		
E	185	140	177	238	240	285	327	349	370	392		
	100	156	187	250	275	300	345	368	391	414		

PASSES		4	5	6	4	5	6	7	8	
PANEL W	IDTHS	:	20" PANE	EL	24" PANEL					
	95	55	58	62	39	41	43	45	47	
	100	74	79	84	64	68	71	74	77	
	105	93	99	105	89	94	98	103	107	
м	110	112	119	127	114	120	126	131	137	
E A	115	131	140	148	139	146	153	160	167	
N	120	150	160	170	164	172	180	189	197	
W	125	169	180	192	189	198	208	217	227	
A T	130	188	201	213	214	225	235	246	257	
E R	135	207	221	235	239	251	263	275	287	
T E	140	227	242	257	264	277	290	303	316	
E M	145	245	261	278	289	303	318	332	346	
P E R	150	264	282	299	313	329	344	360	376	
Ř	155	282	301	320	338	355	372	389	406	
Ą	160	301	321	341	363	381	399	417	436	
U R E	165	320	341	363	389	408	428	447	467	
E	170	340	363	385	413	434	454	475	496	
(°F)	175	360	384	408	438	460	482	504	526	
	180	380	405	431	463	486	509	532	556	
	185	404	431	458	488	512	537	561	586	
	190	427	456	484	513	539	564	590	616	
м	95	46	50	53	34	35	37	39	40	
E	100	63	67	71	55	57	60	63	66	
A N	105	79	84	89	76	80	84	87	91	
5	110	95	101	108	97	102	107	112	117	
0 /	115	111	119	126	118	124	130	136	142	
5 0	120	128	136	145	139	146	153	160	167	
	125	144	153	163	161	169	177	185	193	
Ę	130	160	171	181	182	191	200	209	218	
H Y	135	176	188	199	203	213	223	233	244	
Ĺ	140	193	206	219	224	235	247	258	269	
N E	145	208	222	236	245	258	270	282	294	
	150	224	239	254	266	279	293	306	319	
T E M	155	240	256	272	288	302	316	331	345	
M	160	256	273	290	309	324	339	355	370	
Ē	165	272	290	308	331	347	364	380	397	
P E R A T	170	289	308	328	351	369	386	404	421	
U R	175	306	327	347	372	391	410	428	447	
R E	180	323	345	366	394	413	433	453	472	
(°F)	185	343	366	389	415	436	456	477	498	
(.)	190	363	387	411	436	458	480	501	523	
м	95	50	53	56	36	38	40	41	43	
E	100	67	72	76	59	62	64	67	70	
A N	105	84	90	96	81	85	89	93	98	
5	110	102	109	115	104	109	114	120	125	
0 /	115	119	127	135	127	133	139	146	152	
/ 5 0	120	137	146	155	149	157	164	172	179	
	125	154	164	174	172	181	189	198	206	
Ŕ	130	171	183	194	195	204	214	224	234	
P R O P Y L E	135	188	201	214	217	228	239	250	261	
Y L	140	207	220	234	240	252	264	276	288	
E N	145	223	238	253	263	276	289	302	315	
N E	150	240	256	272	285	299	313	328	342	
Ţ	155	257	274	291	308	323	339	354	370	
Ā	160	274	292	310	330	347	363	380	396	
P E	165	291	311	330	354	372	389	407	425	
R	170	309	330	351	376	395	413	432	451	
T E M P E R A T U R E	175	328	350	371	399	419	438	458	478	
R	180	346	369	392	421	442	463	485	506	
E	185	368	392	417	444	466	488	511	533	
(°F)	190	389	415	440	467	490	514	537	560	

PANEL WI	PASSES		6	7	8	9	10					
	DTHS	30" PANEL										
	95	47	49	51	52	54	56					
	100	77	80	83	86	89	92					
	105	107	111	115	119	124	128					
м	110	137	142	147	153	158	164					
E A N	115	166	173	180	186	193	200					
	120	196	204	212	220	228	236					
W	125	226	235	244	253	263	272					
A T E R	130	256	266	277	287	297	307					
Ř	135	286	298	309	320	332	343					
T E	140	316	329	341	354	367	379					
E	145	346	360	374	387	401	415					
M P E R A T U R E	150	375	390	405	420	435	450					
Ř	155	406	422	438	454	471	487					
Ť	160	436	453	471	488	506	523					
U R	165	466	485	503	522	541	559					
E	170	495	515	535	554	574	594					
(°F)	175	525	546	567	588	609	630					
	180	555	577	599	622	644	666					
	185	586	609	633	656	680	703					
	190	615	640	664	689	713	738					
М	95	40	41	43	45	46	48					
Ë	100	65	68	70	73	76	78					
E A N	105	91	94	98	102	105	109					
5	110	116	121	125	130	135	139					
5 0 /	115	142	147	153	158	164	170					
5 0	120	167	174	180	187	194	200					
	125	192	200	208	215	223	231					
Ē	130	218	227	235	244	253	261					
H Y	135	243	253	263	272	282	292					
E	140	269	279	290	301	312	322					
E T H Y L E N E	145	294	306	318	329	341	353					
	150	319	332	344	357	370	383					
É	155	345	359	373	386	400	414					
P	160	371	385	400	415	430	445					
T E M P E R A T U R	165	396	412	428	444	459	475					
A T	170	421	438	454	471	488	505					
ÿ	175	446	464	482	500	518	536					
Ē	180	472	491	509	528	547	566					
(°F)	185	498	518	538	558	578	598					
	190	523	544	565	585	606	627					
ME	95	43	44	46	48	49	51					
A N	100	70	73	75	78	81	84					
	105	97	101	105	109	113	116					
5 0	110	124	129	134	139	144	149					
/	115	152	158	164	170	176	182					
5 0	120	179	186	193	200	207	214					
P	125	206	214	222	231	239	247					
P R O P Y L E N E	130	233	242	252	261	270	280					
Y Y	135	260	271	281	292	302	312					
L	140	288	299	311	322	334	345					
NF	145 150	315	327	340	353	365	378					
		341	355 384	369	382 414	396	410					
Ė	155 160	369 397	384 413	399 429	414	428	443 476					
P	160	424	413	429	444 475	460 492	476 509					
E R	165	424 450	441	458 486	475 505	492 523	509					
T E M P E R A T U R E		450 478	468		505		541					
Ľ	175 180		497 525	516 545	535	554 586						
Ē	180	505 533	525 555	545 576	500	619	606 640					
(°F)	105	560	555	604	627	649	672					

PASSE	S	6	7	8	9	10	11	12				
PANEL WIDTHS		36" PANEL										
	95	52	54	55	57	59	61	62				
	100	86	89	92	95	98	101	103				
	105	120	124	128	132	136	141	144				
M	110	155	160	165	170	175	180	186				
E A N	115	189	195	201	208	214	220	227				
w	120	223	230	238	245	253	260	268				
	125	257	266	274	283	291	300	309				
A T E R	130	291	301	311	321	330	340	350				
	135	326	336	347	358	369	380	391				
T E	140	360	372	384	396	408	420	432				
M	145	394	407	420	433	446	460	473				
M P E R	150	428	442	457	471	485	500	514				
A T	155	463	478	494	509	525	540	556				
T U	160	497	513	530	546	563	580	596				
U R E	165	531	549	567	584	602	620	637				
	170	565	584	603	622	640	659	678				
(°F)	175	599	619	639	659	679	699	719				
	180	633	654	675	696	717	739	760				
	185	668	690	713	735	757	780	802				
	190	702	725	749	772	795	819	842				
M E	95	44	46	47	49	50	52	53				
A N	100	73	76	78	81	83	86	88				
N	105	102	106	109	113	116	119	123				
5 0 /	110	131	136	140	145	149	153	158				
Ĭ	115	160	166	171	177	182	187	193				
5 0	120	190	196	202	209	215	221	227				
E	125	219	226	233	240	248	255	262				
Т	130	248	256	264	272	281	289	297				
E T H Y L	135	277	286	295	304	314	323	332				
Ē	140	306	316	326	336	347	357	367				
E N E	145	335	346	357	368	379	391	402				
т	150	364	376	388	400	412	425	437				
E M	155	394	407	420	433	446	459	472				
P	160	422	436	450	464	478	493	507				
Ř	165	451	466	482	496	511	527	542				
T E M P E R A T U R E	170	480	496	512	528	544	560	576				
U R	175	509	526	543	560	577	594	611				
E	180	538	556	574	592	610	628	646				
(°F)	185 190	568	587	606	625	643	663	681				
		597	616	637	656	676	696	716				
M	95 100	47 78	49 81	50 84	52 86	54 89	55 92	57 94				
Ā	100	110	113	04 117	121	09 124	92 128	94 131				
	110	141	145	150	121	124	128	169				
5 0	115	141	145	183	155	195	200	206				
/ 5	120	203	210	217	223	230	237	200				
0	120	203	242	250	223	265	273	244				
P R	130	265	274	283	292	300	309	318				
P R O P Y L E N E	135	205	306	316	326	336	346	356				
Ý	140	327	338	349	360	371	382	393				
L E	145	359	370	383	394	406	418	430				
N E	150	390	403	416	429	441	455	468				
	155	421	435	450	463	477	492	506				
Ė	160	452	467	482	400	512	527	542				
M	165	483	499	516	532	547	564	580				
P	170	514	531	549	566	583	600	617				
Р Е R				582	600	618	636	654				
F E R A T	175	545	50.1									
F E R A T U	175 180	545 576	563 595									
T E M P E R A T U R E	175 180 185	545 576 608	595 628	615 649	634 669	653 689	672 709	691 729				

PASS	SES	1	2	2	2	4	3	4	4	5	6
PANE WIDTI (mn	HS *	150	200	250	300	400	450	500	600	750	900
	48.9	52	61	-	75	90	105	-	157	188	215
M	51.7	60	70	-	89	107	123	-	181	217	248
E A	54.4	68	82	-	102	124	142	-	205	246	281
N	57.2	76	90	-	116	141	160	-	229	274	314
w	60.0	84	100	120	129	159	179	218	253	303	347
A T	62.8	92	110	132	143	175	197	236	277	332	379
E	65.6	100	119	145	156	194	216	254	301	361	412
R	68.3	108	129	157	170	211	234	271	325	390	445
Т	71.1	116	139	170	183	229	253	289	349	419	478
E M	73.9	124	148	182	197	245	271	308	373	448	511
P	76.7	132	158	195	210	264	290	327	397	476	543
E R	79.4	140	168	207	224	281	308	346	421	505	576
A	82.2	148	179	220	237	300	327	365	445	534	609
Т U	85.5	156	189	232	251	316	345	388	469	563	642
R	87.8	164	199	245	264	335	364	411	493	591	675
E	90.6	172	208	257	278	351	382	435	517	620	708
(°C)	93.3	180	217	270	291	369	401	453	541	649	741
	96.1	188	227	282	305	386	419	471	565	678	774
	98.9	196	238	295	318	404	438	489	589	707	807
	101.7	204	248	307	332	422	456	507	613	735	840

LINEAR PANEL METRIC OUTPUTS

OUTPUTS EXPRESSED IN WATTS/LINEAL METRE OF PANEL AND ARE BASED ON 21°C ROOM TEMPERATURE. FOR EVERY 1°C DECREASE IN ROOM TEMPERATURE BELOW 21°C, THE OUTPUT INCREASES BY 2%. FOR EVERY 1°C INCREASE IN ROOM TEMPERATURE ABOVE 21°C, THE OUTPUT DECREASES BY 2%.

ANY PANEL WIDTH CAN BE CONSTRUCTED BY COMBINING 100mm AND 150mm EXTRUSIONS AND INTERPOLATING THE APPROPRIATE OUTPUTS.

*REFER TO PAGE L-7 FOR ACTUAL PANEL WIDTHS & FINISHED OPENINGS

Linear Radiant Panel

PANEL OUTPUTS – 50/50 ETHYLENE – (IMPERIAL)

LINEAR PANEL IMPERIAL OUTPUTS - 50/50 ETHYLENE

PASSES		1	2	2	2	3	4	3	4	4	5	6
PANEL WIDTHS [inches]		6	8	10	12	15	16	18	20	24	30	36
	120	45	53	-	65	-	79	91	-	136	164	187
М	125	52	61	-	78	-	93	107	-	157	189	216
E A	130	60	71	-	89	-	108	124	-	179	215	245
Ň	135	67	79	-	102	-	124	140	-	201	240	276
14/	140	75	88	106	113	135	139	157	192	222	266	305
W	145	81	96	116	126	151	157	174	207	244	292	334
T	150	88	105	128	137	166	171	191	224	265	318	363
A T E R	155	95	114	139	151	180	186	209	240	288	345	394
	160	103	124	151	162	197	203	225	257	310	373	425
Т	165	110	132	162	176	212	218	242	274	333	399	455
E	170	117	141	174	187	227	237	259	291	354	425	485
M	175	126	151	185	198	242	251	276	310	377	452	516
Ē	180	133	161	198	213	260	270	294	329	400	480	547
P E R A T	185	140	171	209	226	274	285	311	350	423	508	574
T	190	148	180	221	239	290	302	329	371	445	534	609
U	195	156	188	233	251	307	318	346	394	468	562	641
R E	200	163	198	246	265	323	336	305	412	493	591	675
	205	171	207	257	278	339	352	382	430	516	618	706
(°E)	210	179	218	269	290	355	369	400	447	529	645	737
(°F)	215	187	227	281	304	372	387	418	464	562	673	770

Outputs expressed in BTUH/Lineal foot of panel and are based on 70°F room temperature. Any panel width can be constructed by combining 4", 6" and 8" extrusions.

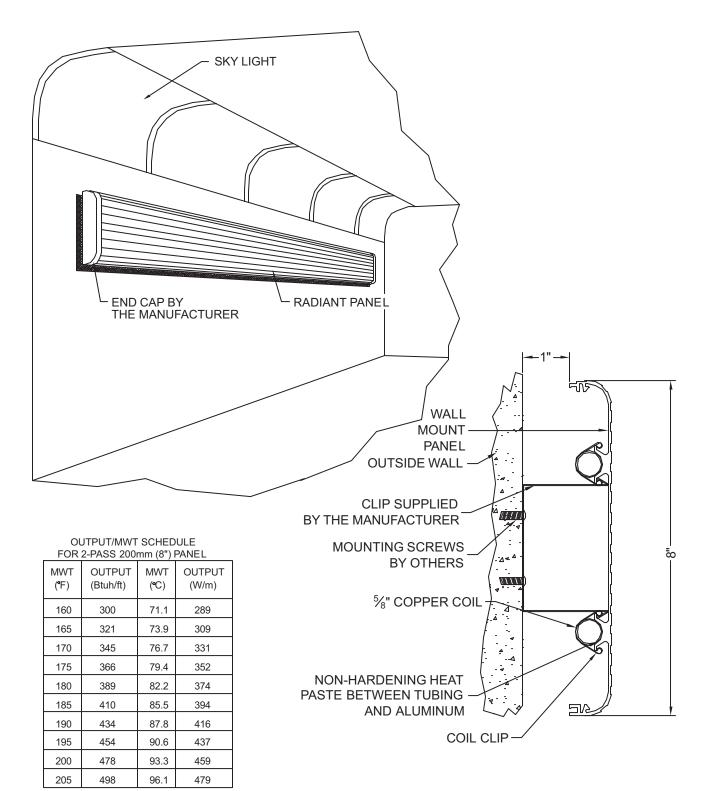
PANEL OUTPUTS – 50/50 PROPYLENE – (IMPERIAL)

LINEAR PANEL IMPERIAL OUTPUTS - 50/50 PROPYLENE

PASSES		1	2	2	2	3	4	3	4	4	5	6
PANEL WIDTHS [inches]		6	8	10	12	15	16	18	20	24	30	36
	120	47	55	-	68	-	82	95	-	143	172	196
М	125	54	64	-	82	-	98	113	-	165	199	227
M E A	130	63	75	-	93	-	114	130	-	188	226	257
N N	135	70	83	-	107	-	130	147	-	210	252	289
14/	140	79	92	111	119	142	146	165	201	233	279	319
W	145	85	101	122	132	158	164	182	217	255	306	349
T I	150	92	110	134	144	174	180	200	235	278	333	380
A T E R	155	100	119	145	158	189	195	219	251	301	362	413
	160	108	129	158	170	205	213	235	269	324	389	444
Т	165	116	138	169	184	222	228	253	287	349	418	476
T E	170	123	147	182	196	238	248	271	305	371	445	507
M	175	131	158	194	210	253	263	288	324	395	473	540
Ë	180	139	168	207	222	272	282	307	343	418	501	572
P E R A T	185	147	178	218	236	286	298	325	366	442	531	605
T T	190	155	188	232	250	303	316	344	388	466	558	637
U U	195	163	197	243	263	322	332	362	412	490	588	670
U R E	200	171	206	257	277	337	351	381	430	514	616	704
	205	178	216	268	290	354	367	399	449	539	646	737
	210	187	228	282	303	372	386	419	467	563	675	770
(°F)	215	195	237	293	317	388	404	436	485	587	703	804

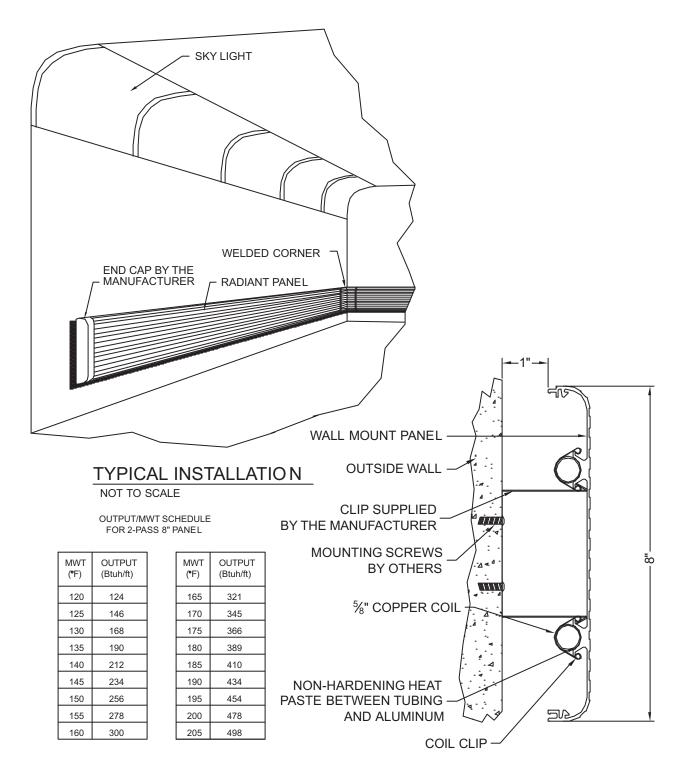
Outputs expressed in BTUH/Lineal foot of panel and are based on 70°F room temperature. Any panel width can be constructed by combining 4", 6" and 8" extrusions.

Linear Radiant Panel

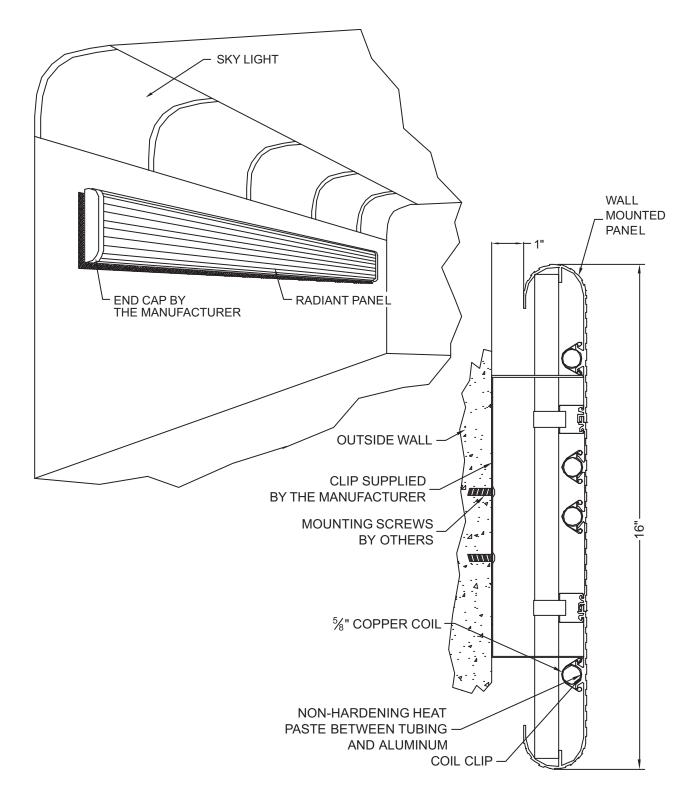

RADIANT PANEL WIDTHS & FINISHED OPENINGS

PANEL WIDTH (IMPERIAL-INCHES)	FINISHED OPENING (IMPERIAL-INCHES)	PANEL WIDTH (METRIC - mm)	FINISHED OPENING (METRIC - mm)
6	6-1/4	154	160
8-1/4	8-1/2	208	214
10	10-1/4	256	262
12	12-1/4	304	310
15	15-1/4	383	389
16-1/8	16-3/8	410	416
17-3/4	18-1/8	454	460
19-7/8	20-1/8	506	512
23-3/4	24	604	610
29-5/8	29-7/8	754	760
35-1/2	35-3/4	902	908

NOTE: FINISHED OPENINGS DO NOT INCLUDE SUPPORT ANGLE THICKNESS.



8" WALL MOUNT PANEL



8" LOWER WALL MOUNT PANEL

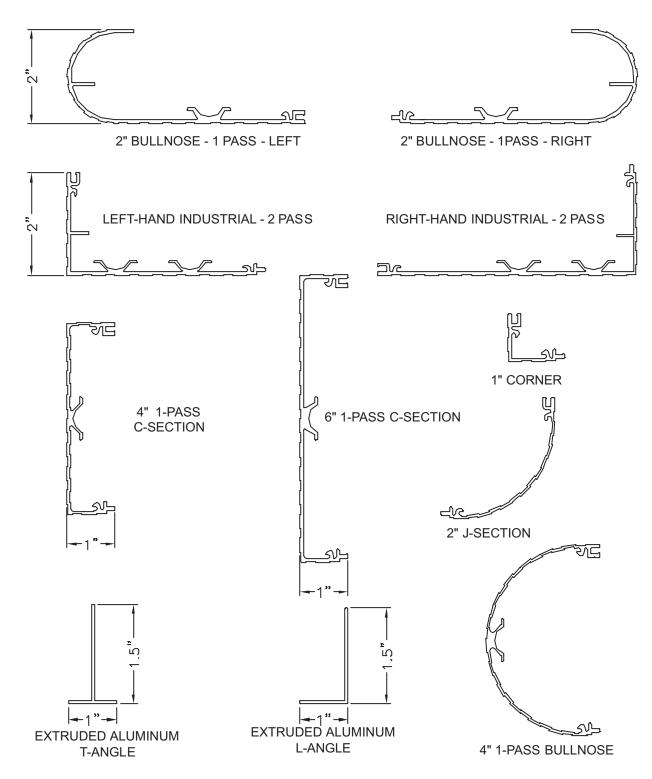
16" WALL MOUNT PANEL

STANDARD CASTELLATED LINEAR EXTRUSIONS

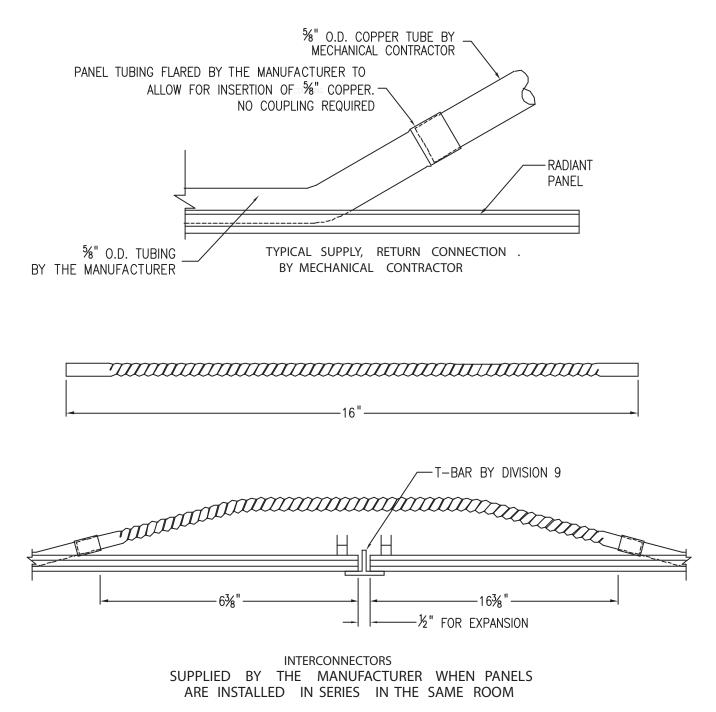
4" (102mm) 1 PASS

6" (154mm) 1 PASS

6" (154mm) 2 PASS


LINEAR CURTAIN TRACK

152mm (6") 1-PASS CURTAIN TRACK



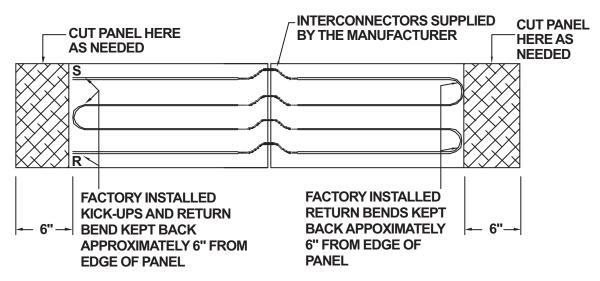
MISCELLANEOUS LINEAR EXTRUSIONS

COPPER CONNECTION DETAILS

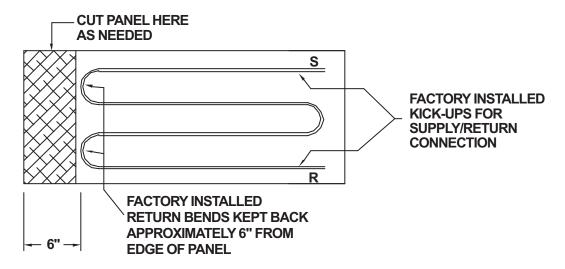
Linear Radiant Panel

GENERAL NOTES

- 1. SHOP DRAWINGS MUST BE AVAILABLE TO THE INSTALLERS PRIOR TO THE START OF PIPING ROUGH IN. PIPING FOR RADIANT PANEL MUST NOT CHANGE FROM THE MECHANICAL DRAWINGS FOR PROJECT.
- 2. RADIANT PANEL DRAWING, ARCHITECTURAL DRAWING AND MECHANICAL DRAWINGS MUST BE CONSULTED BEFORE INSTALLATION BEGINS. REFER TO MECHANICAL DRAWINGS FOR PIPE SIZES AND VALVE LOCATIONS. ANY PANEL INSTALLED AGAINST EXTERIOR WALLS SHOULD HAVE THE FIRST TUBE SUPPLIED NEAREST THE WALL.
- 3. INSTALL RADIANT PANELS WITH FEMALE EDGE TOWARD EXTERIOR WALL. PLEASE NOTE THAT ALL PANELS ARE MADE WITH A RED LABEL INDICATING FEMALE EDGE.

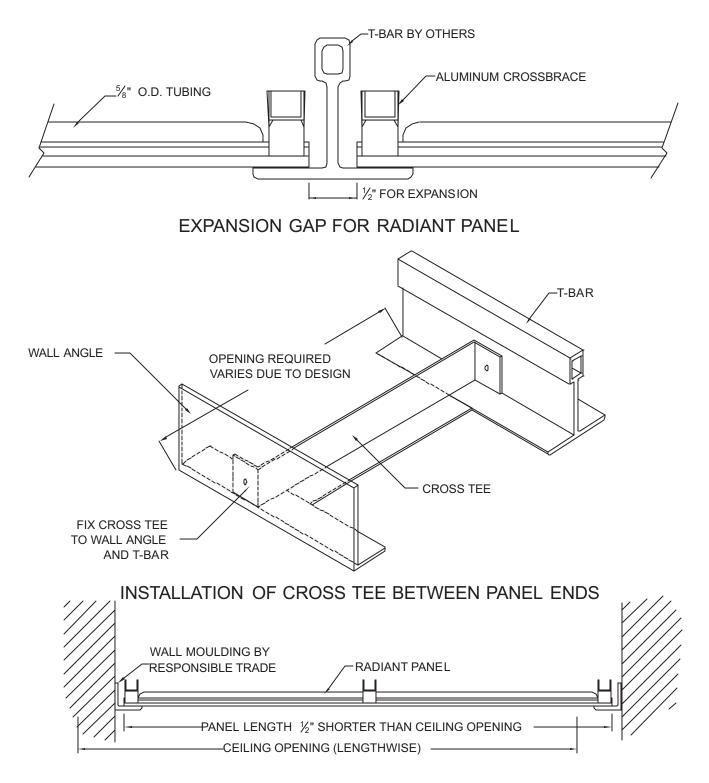

FEMALE EDGE → <u>D</u>

- 4. ALL RADIANT PANELS MUST HAVE AT LEAST ONE TIE WIRE ON EACH CROSS BRACE.
- 5. BRACING ON RADIANT PANELS: 2 BRACES - UP TO 5 feet 3 BRACES - 5 feet TO 10 feet 4 BRACES - 10 feet TO 14 feet 5 BRACES - 14 feet TO 16 feet
- FOR CUTTING OF RADIANT PANELS USE A CIRCULAR SAW WITH A CARBIDE TIPPED BLADE. CUT WITH THE FINISH SURFACE FACING THE SAW. ENSURE YOU PROTECT THE FINISH SURFACE BEFORE CUTTING BEGINS.
- 7. WHEN PANELS REQUIRE SITE CUTTING, FOLLOW THESE STEPS:
 - 1. Install all but the last panel, measure length required,
 - 2. Cut last panel to required length using procedure listed in part 6 above,
 - 3. Install final panel in ceiling.
- 8. STERLING IS RESPONSIBLE ONLY FOR THE SUPPLY OF RADIANT PANELS. OTHERS ARE TO SUPPLY AND INSTALL THE FOLLOWING:
 - 1. Necessary piping between panels (other than interconnectors, as indicated on plan)
 - 2. Piping from panels to supply and return mains.
 - 3. Specified insulation and hanger wires.
 - 4. Suspended ceiling grids and panel support moldings.

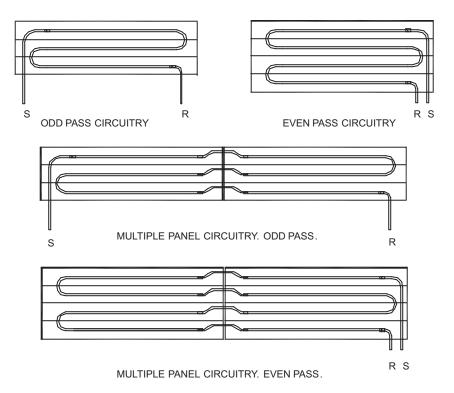


CUTTING INSTUCTIONS

MULTI-PANEL INSTALLATION



SINGLE PANEL INSTALLATION

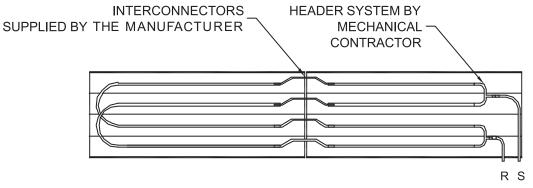


LINEAR PANEL EXPANSION DETAILS

LINEAR CIRCUITRY AND PRESSURE DROPS

Single panel length to a maximum of 16 feet

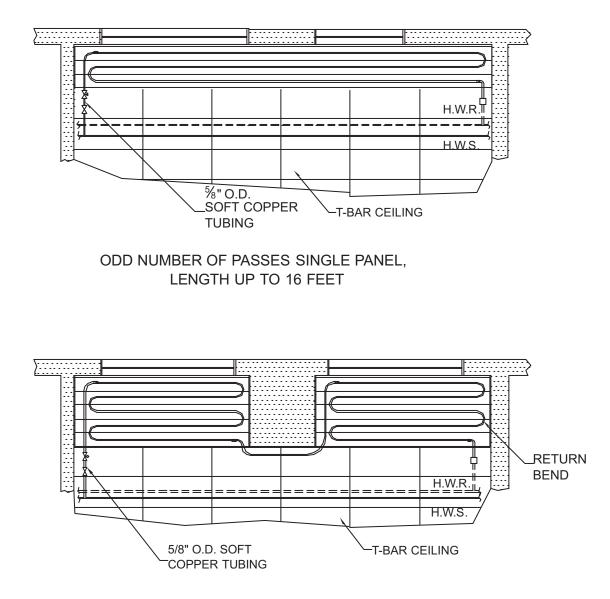
Pressure drop for $\frac{5}{8}$ " O.D. tubing:


at 0.5 GPM is 0.5 foot drop per 100 feet (Flow rate US gal/min) at 1 GPM is 2 feet drop per 100 feet at 2 GPM is 7 feet drop per 100 feet at 2.5 GPM is 10 feet drop per 100 feet at 3 GPM is 14 feet drop per 100 feet

Refer to L-17 for additional pressure drop info.

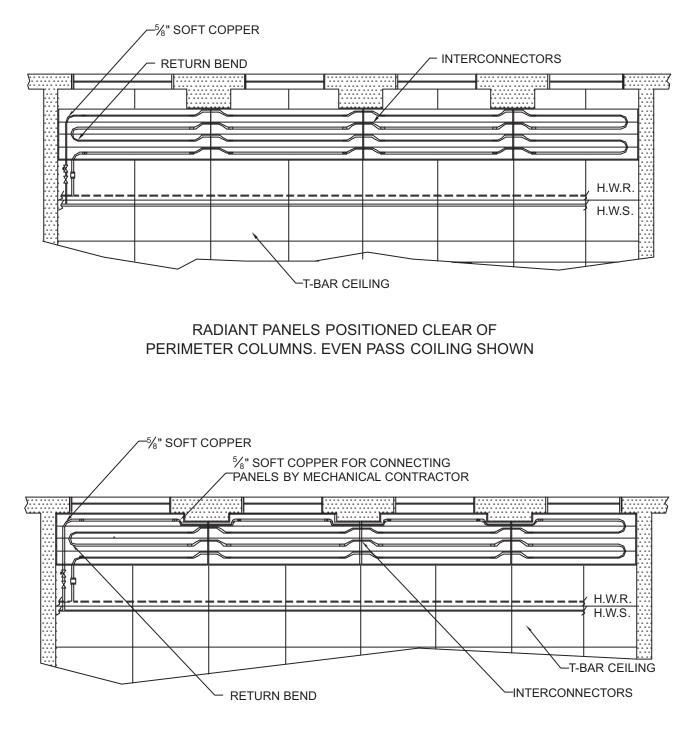
INTERCONNECTOR PRESSURE DROPS

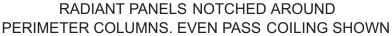
HEADER CIRCUITRY



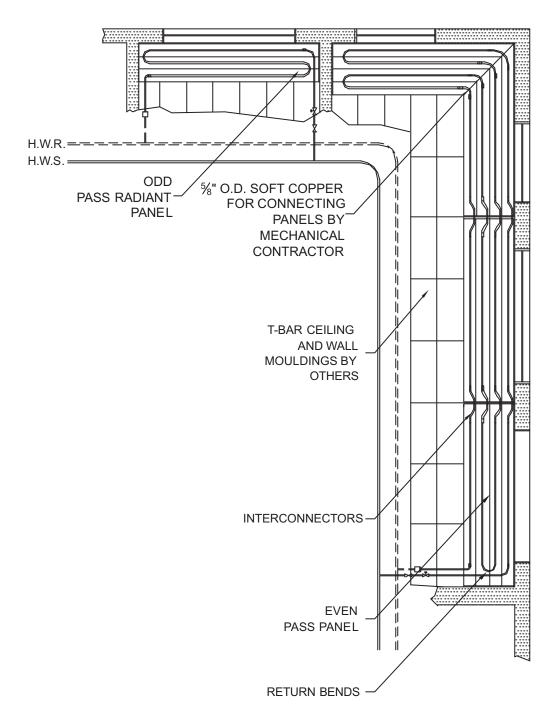
MULTIPLE PANEL CIRCUITRY FOR LONGER ZONES

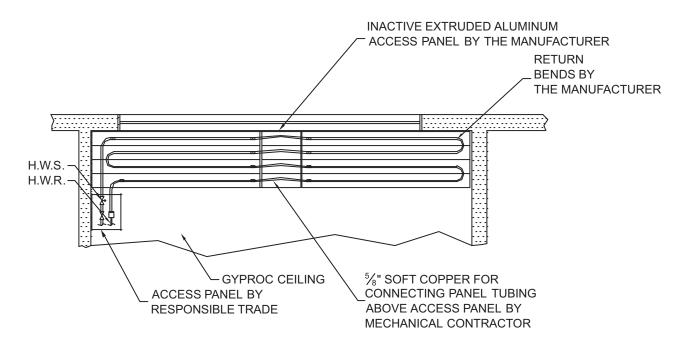
INTERCONNECTORS							
Flow Rate (US gal/min)	Interconnector Pressure Drop (psi)						
0.5	0.0505						
1.0	0.168						
2.0	0.559						
2.5	0.823						
3.0	1.13						


LINEAR PANELS IN T-BAR CEILING

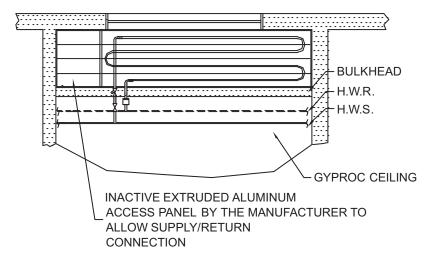


TWO ODD NUMBER PASS PANELS PIPED AROUND COLUMN

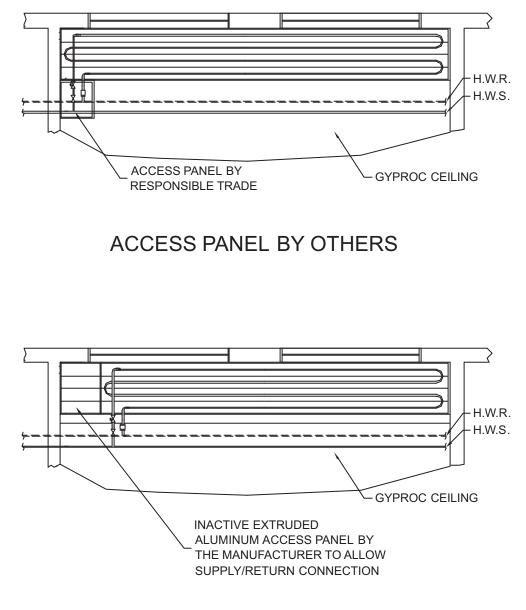

PERIMETER PANELS WITH COLUMN INTERFERENCE



PIPING DETAIL FOR ODD AND EVEN PASS LINEAR PANELS

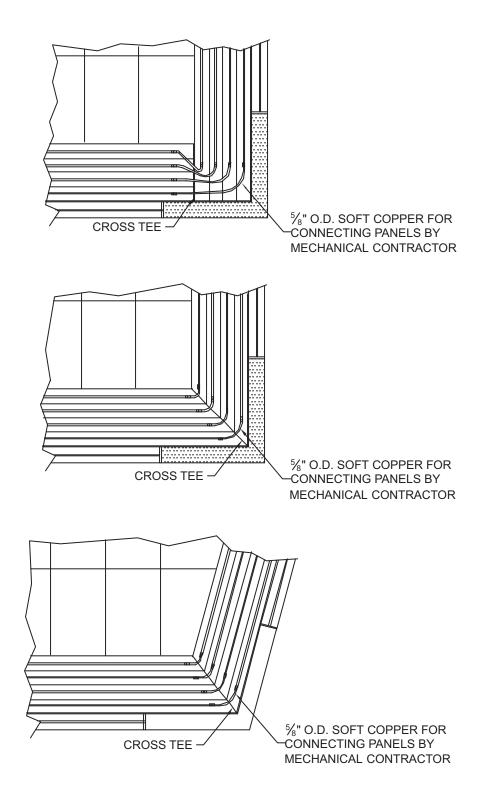


ACCESS PANELS WHERE ACCESSIBILITY IS REQUIRED

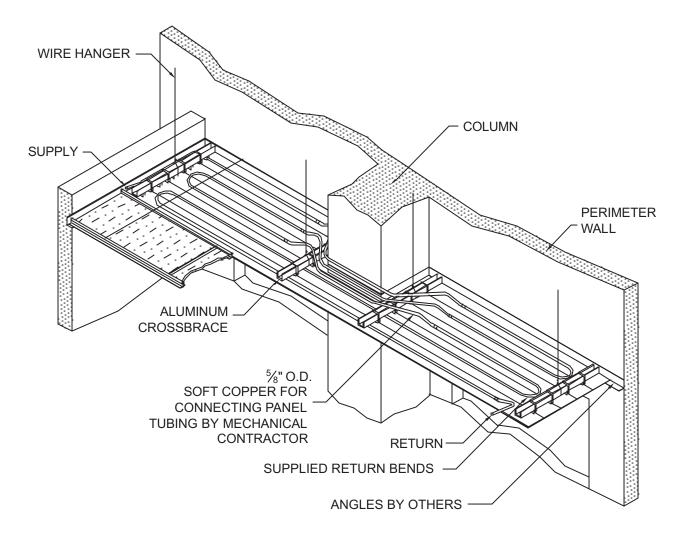

TWO PANEL EVEN PASS CONFIGURATION

SINGLE PANEL EVEN PASS CONFIGURATION

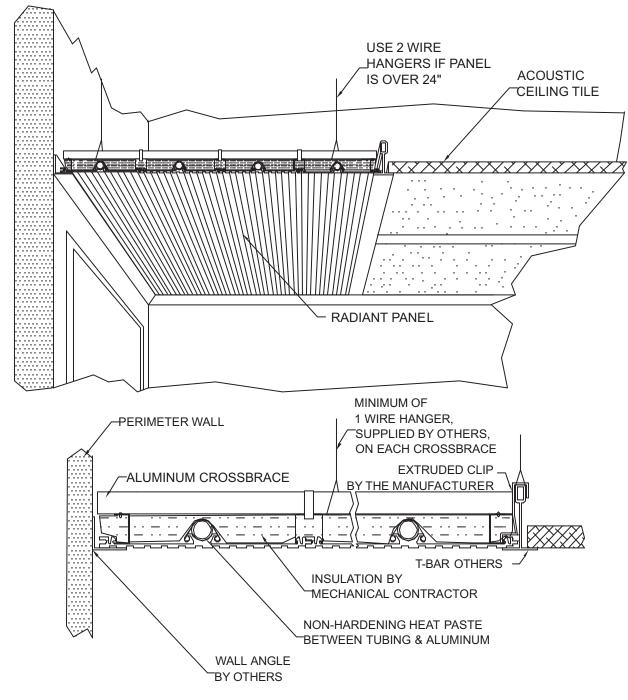
ACCESS PANELS WHERE ACCESSIBILITY IS REQUIRED



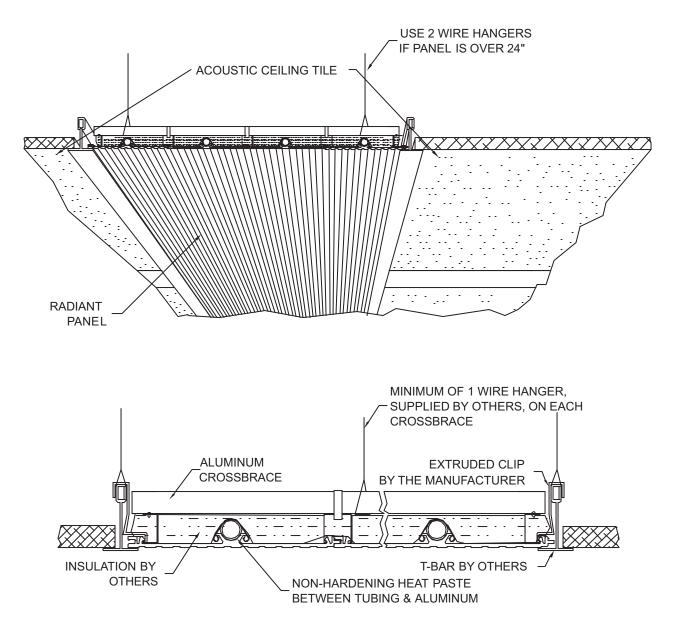
ACCESS PANEL BY THE MANUFACTURER



CORNER DETAILS

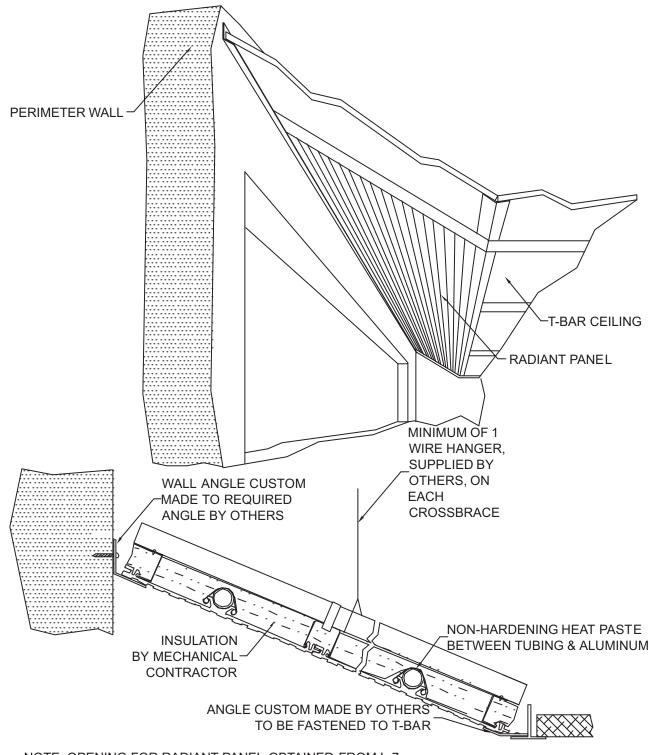

SERPENTINE CIRCUITING AROUND COLUMN

NOTE: PANEL WIDTH VARIES DUE TO DESIGN.

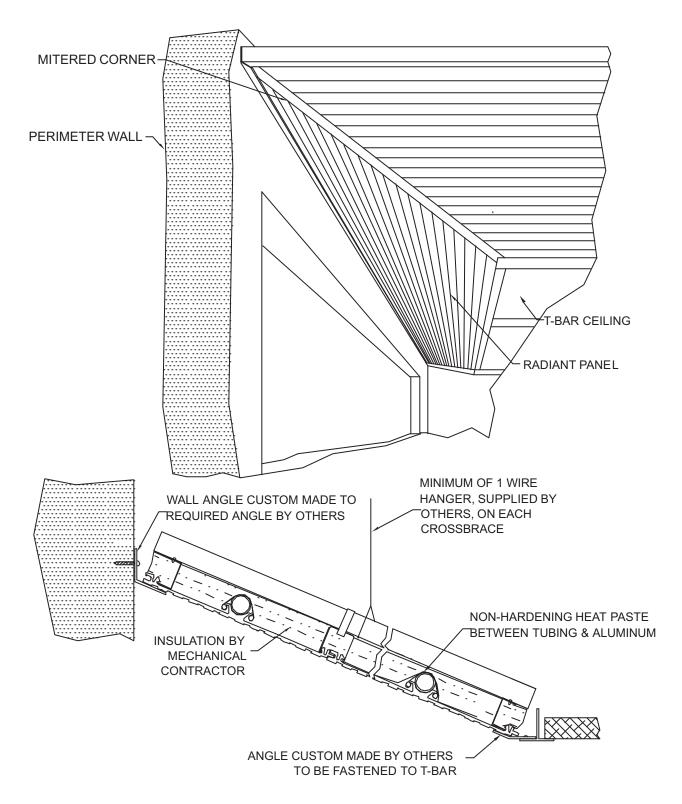

INSTALLED IN PERIMETER T-BAR CEILING

NOTE: OPENING FOR RADIANT PANEL OBTAINED FROM L-7.

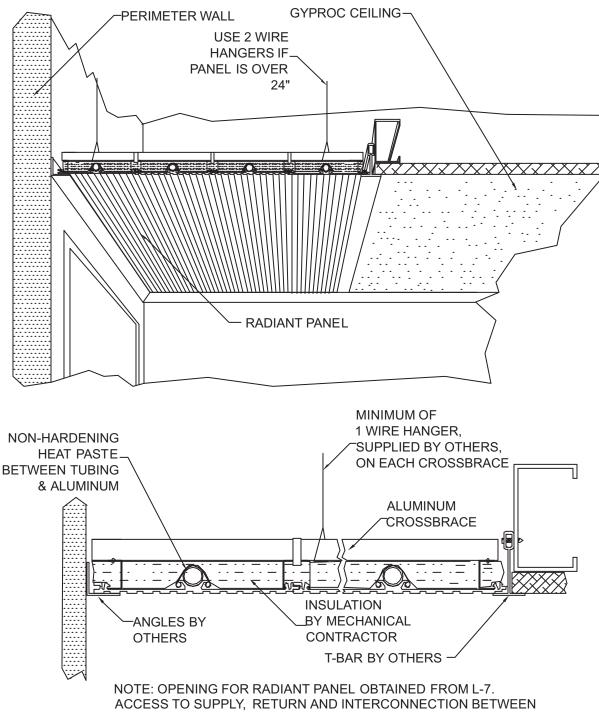
INSTALLED IN INTERIOR T-BAR CEILING



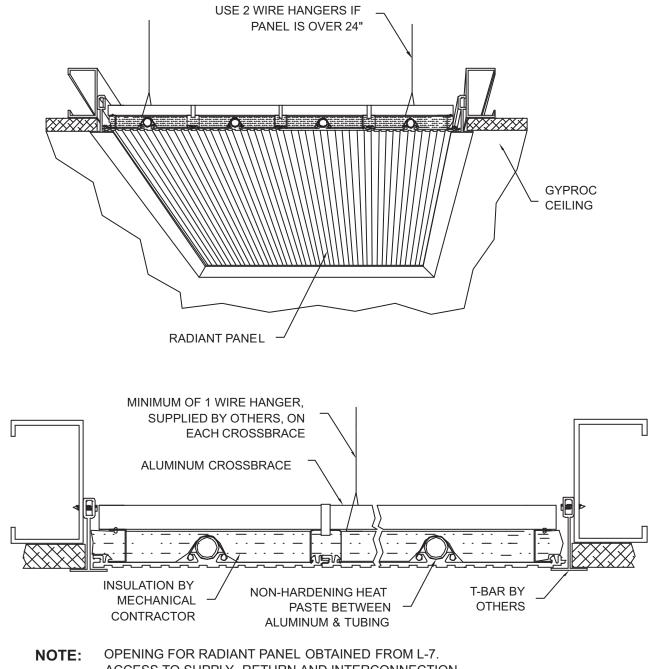
NOTE: OPENING FOR RADIANT PANEL OBTAINED FROM L-7.


SLOPED LINEAR PANEL IN T-BAR CEILING

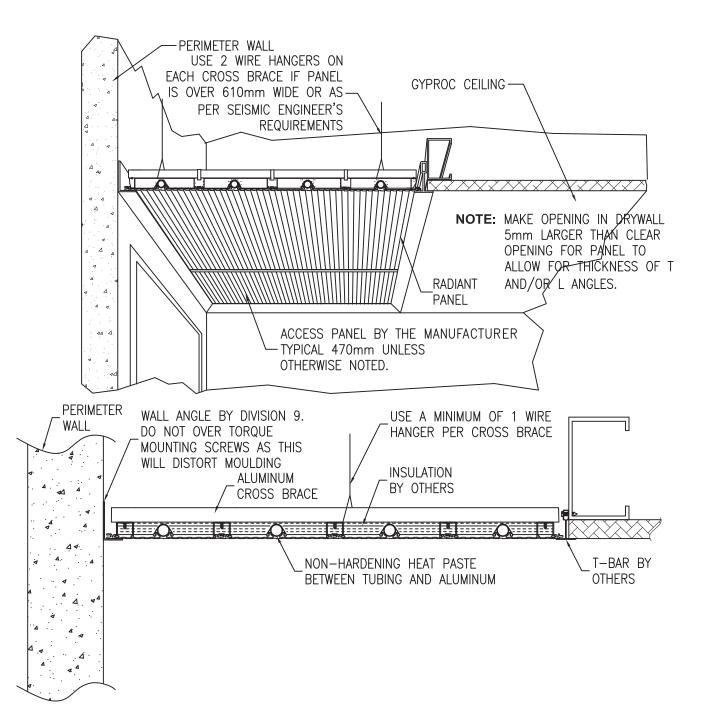
NOTE: OPENING FOR RADIANT PANEL OBTAINED FROM L-7.



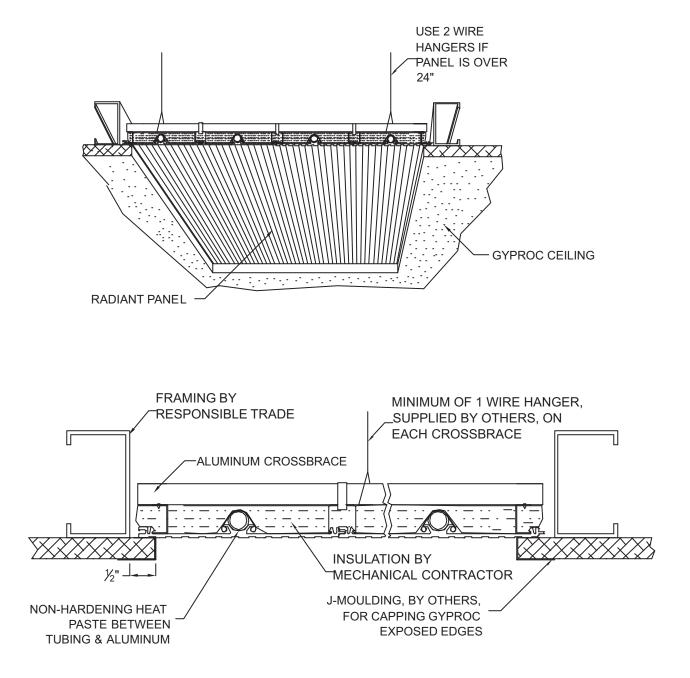
SLOPED LINEAR PANEL IN T-BAR CEILING WITH CORNER


LINEAR PANELS AT PERIMETER WALL IN GYPROC CEILING

PANELS WILL BE REQUIRED.

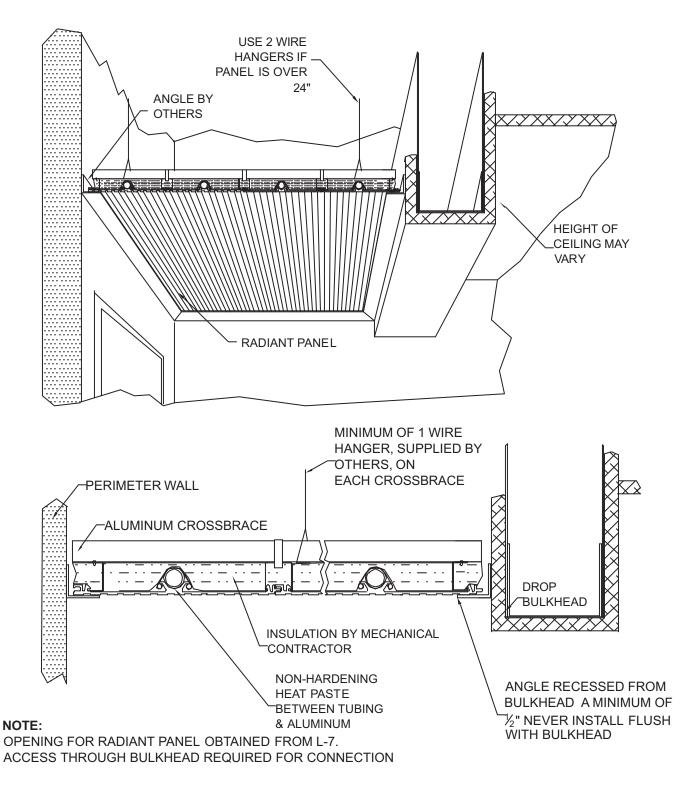

LINEAR PANELS IN GYPROC CEILING

ACCESS TO SUPPLY, RETURN AND INTERCONNECTION BETWEEN PANELS WILL BE REQUIRED.



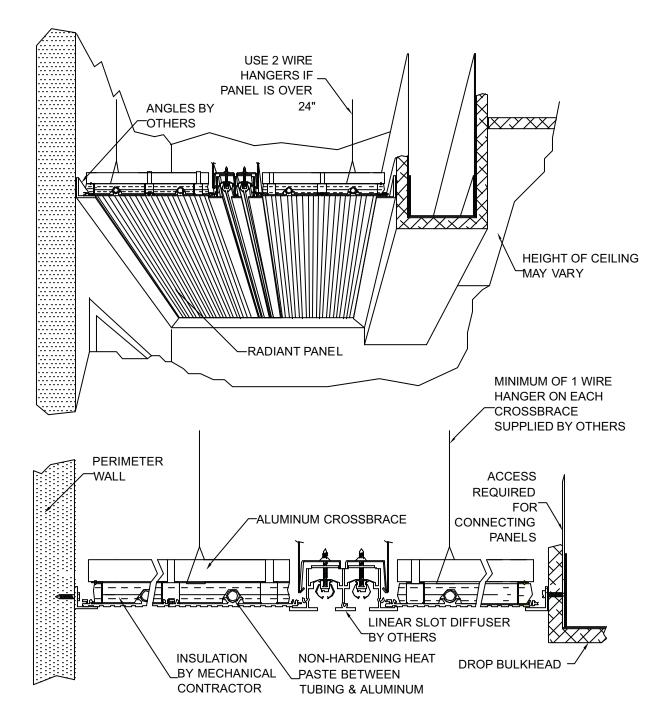
LINEAR PANELS AT PERIMETER WALL IN GYPROC CEILING

RECESSED LINEAR PANEL IN GYPROC CEILING

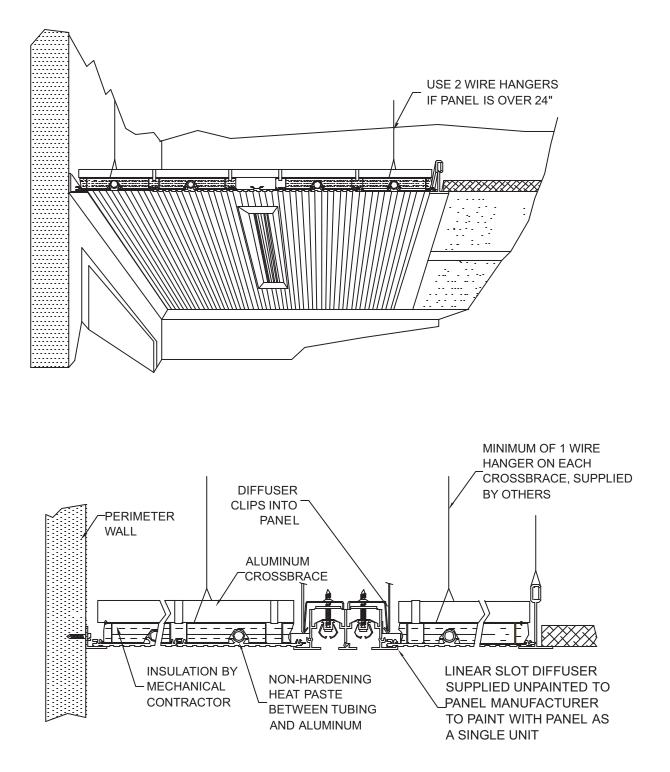


NOTE:

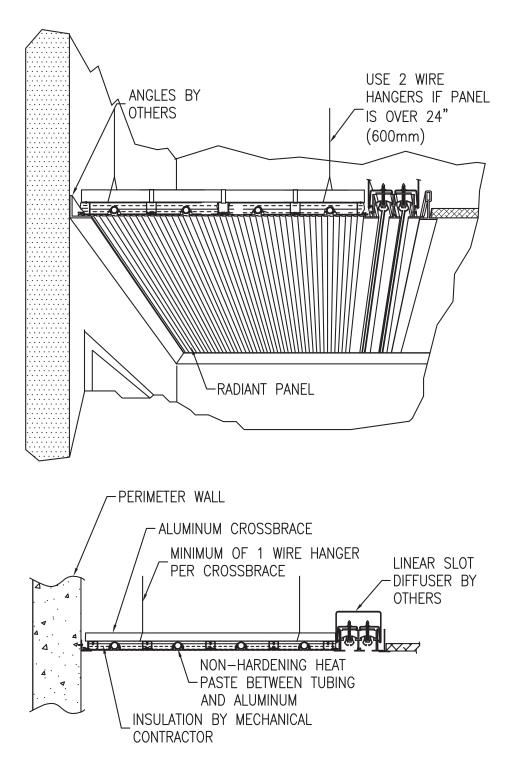
ACCESS TO SUPPLY, RETURN AND INTERCONNECTION BETWEEN PANELS WILL BE REQUIRED. OPENING FOR RADIANT PANEL OBTAINED FROM L-7.



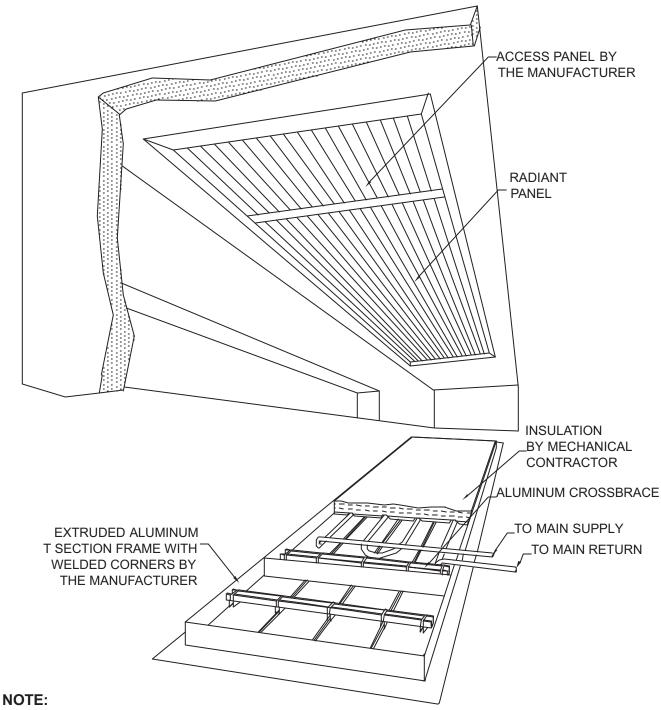
LINEAR PANEL BEHIND BULKHEAD



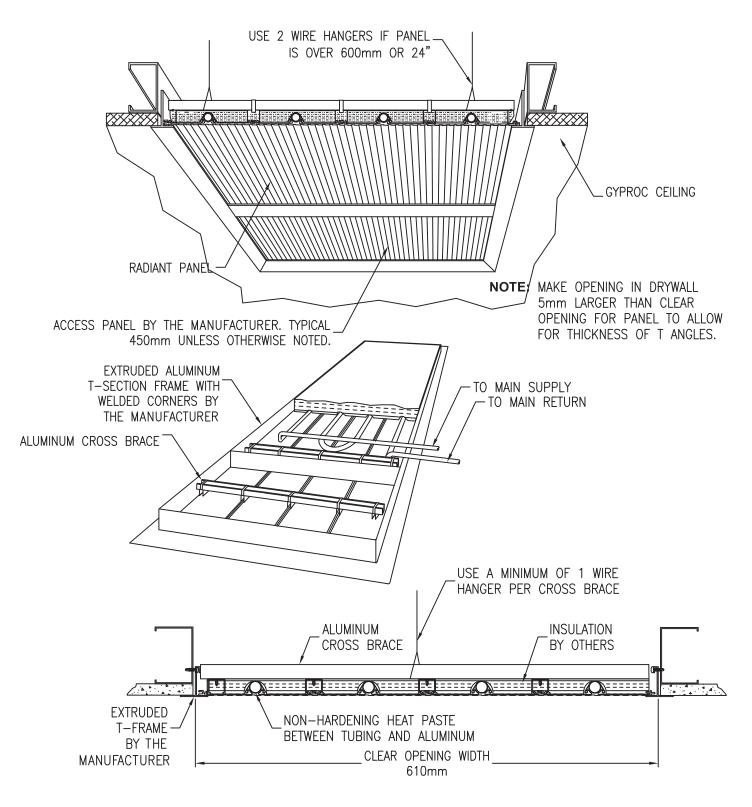
SLOT DIFFUSER IN LINEAR PANEL BEHIND BULKHEAD



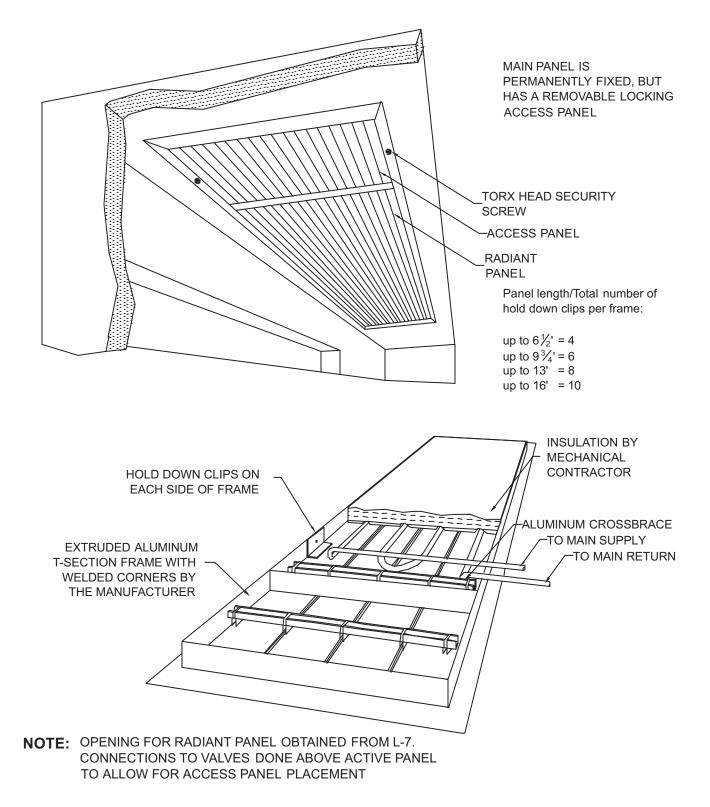
SLOT DIFFUSER IN LINEAR PANEL IN T-BAR



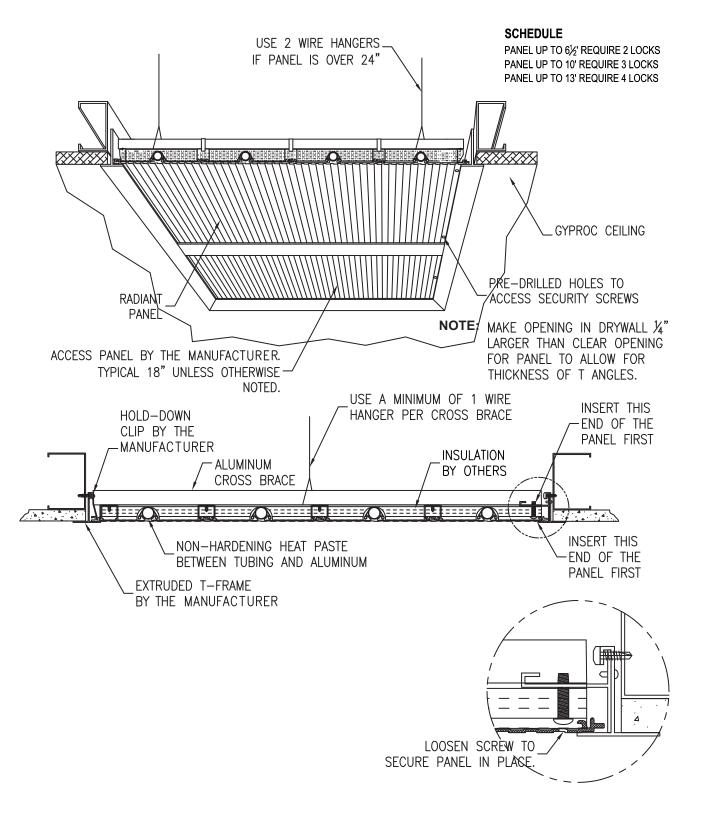
SLOT DIFFUSER IN LINEAR PANEL


FRAMED PANEL WITH ACCESS PANEL IN GYPROC CEILING

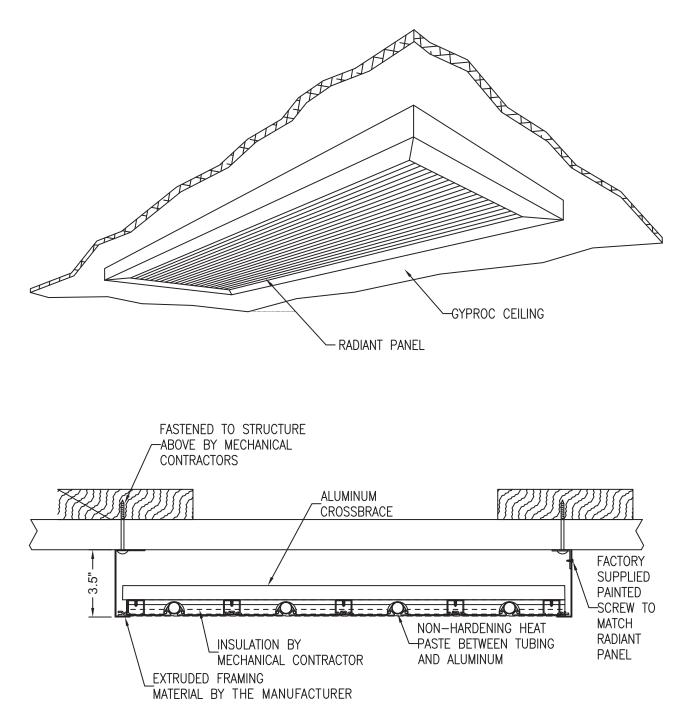
CONNECTIONS TO VALVES DONE ABOVE ACTIVE PANEL TO ALLOW FOR ACCESS PANEL PLACEMENT. OPENING FOR RADIANT PANEL OBTAINED FROM L-7.



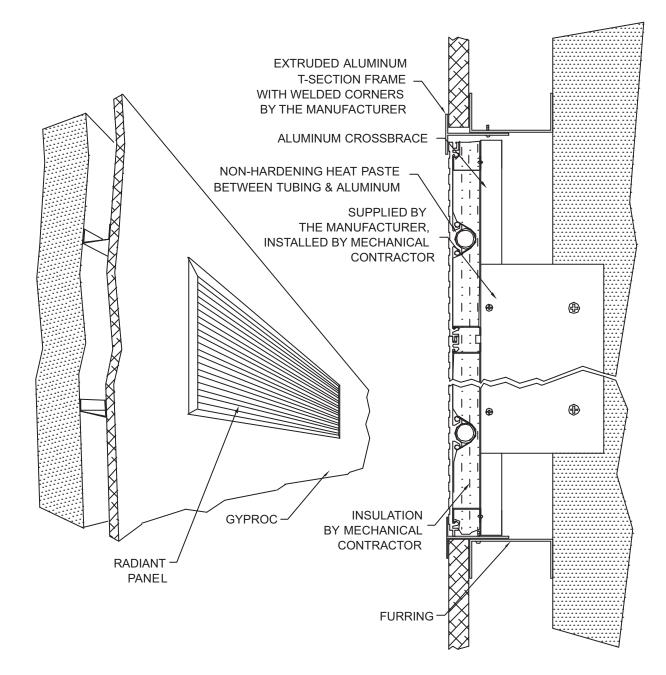
FRAMED LINEAR PANEL IN GYPROC CEILING



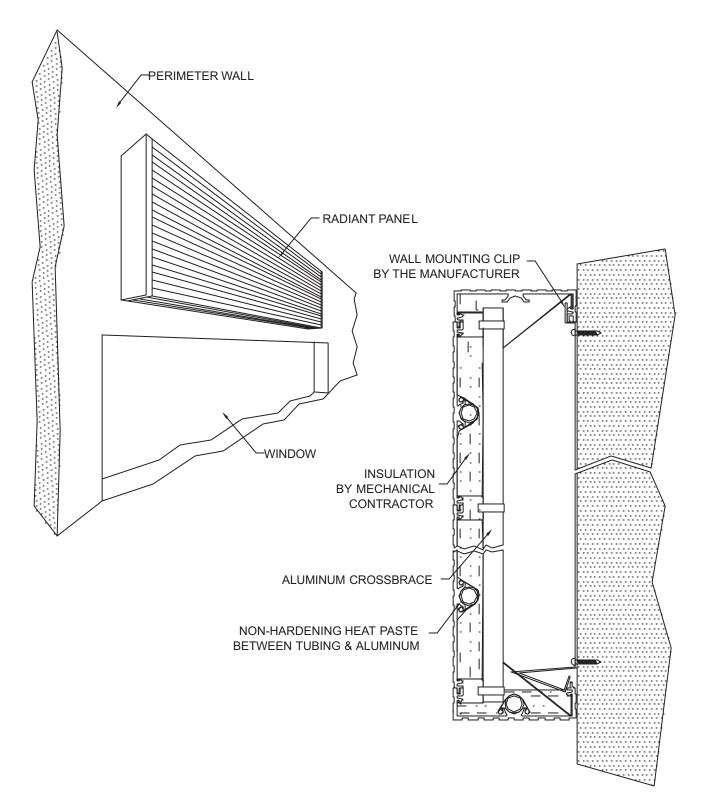
FRAMED LINEAR SECURITY PANEL WITH ACCESS PANEL IN GYPROC CEILING



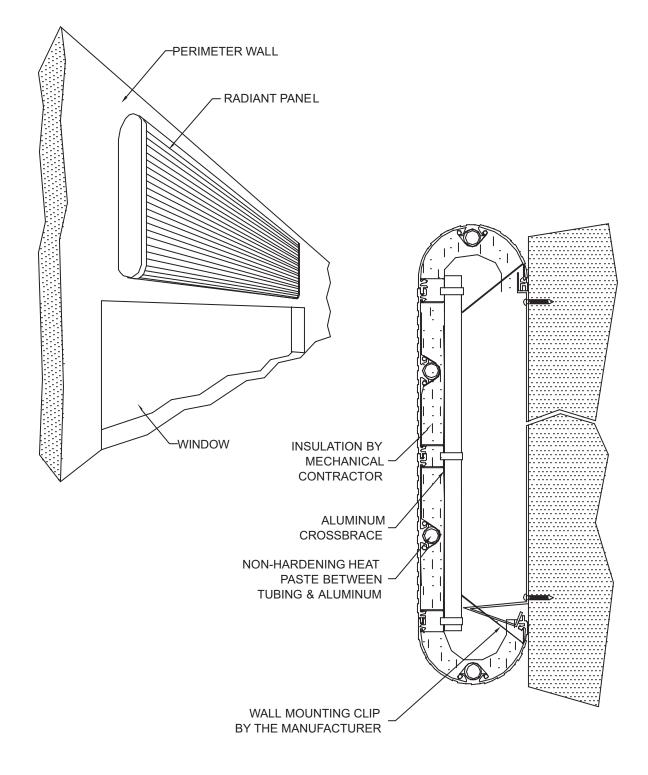
REMOVABLE LOCKING LINEAR PANEL IN GYPROC CEILING



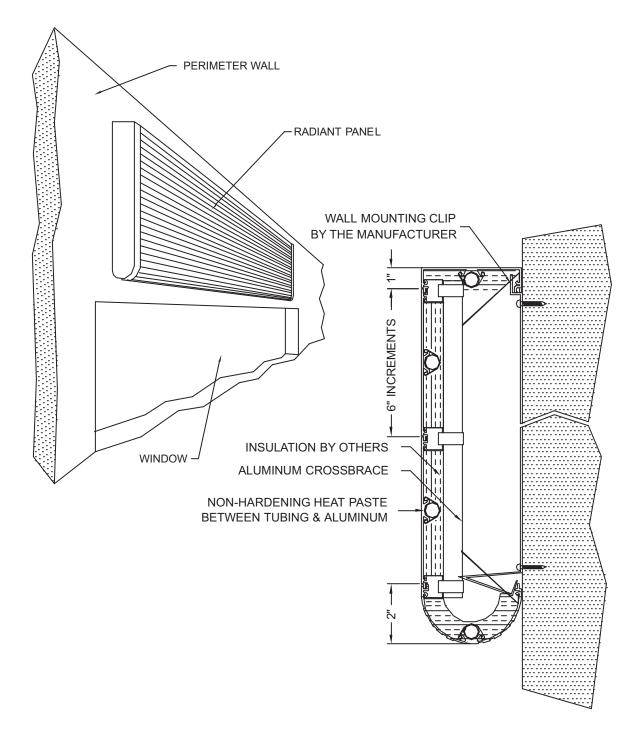
VERTICAL LINEAR PANEL IN GYPROC WALL

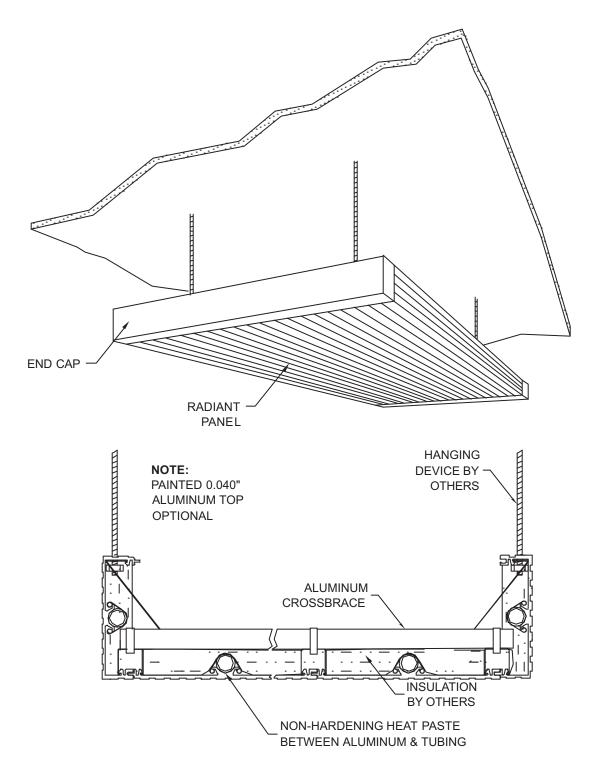


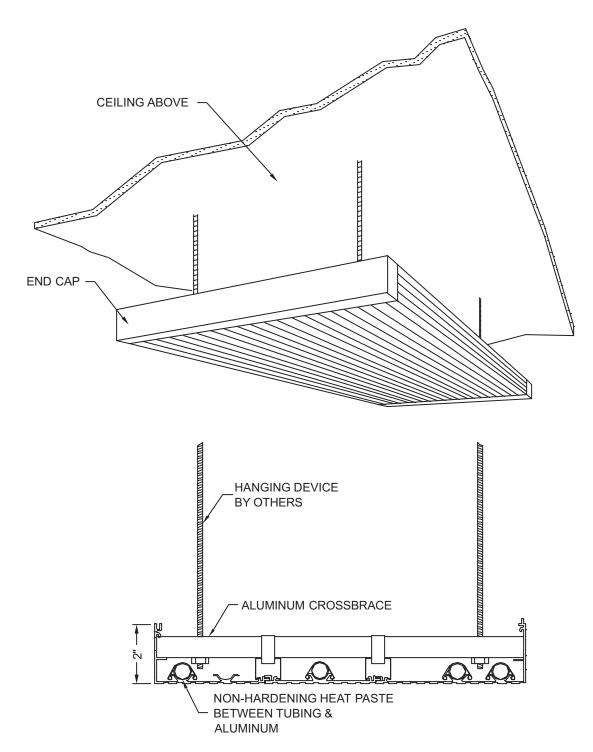
NOTE:

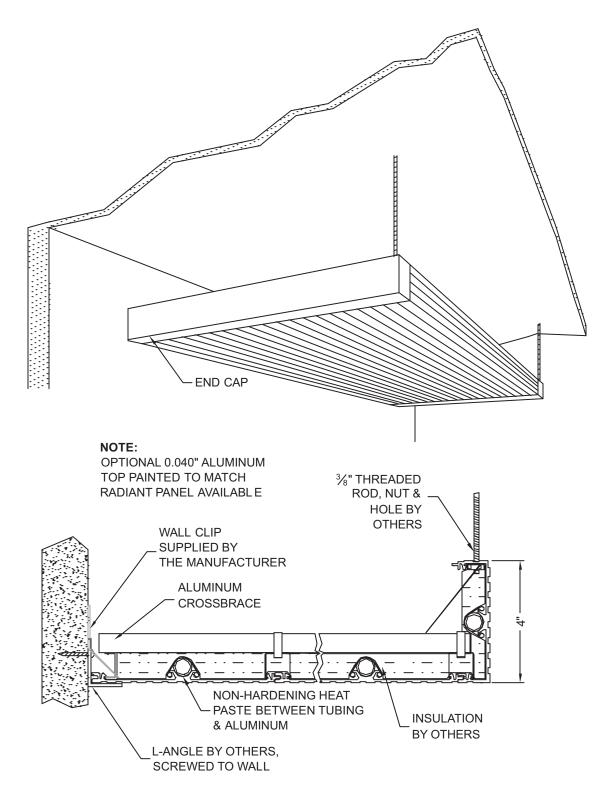

ACCESS REQUIRED TO THE BACK OF RADIANT PANEL TO ALLOW FOR CONNECTION OF PIPING AND HOLDING BRACKET.

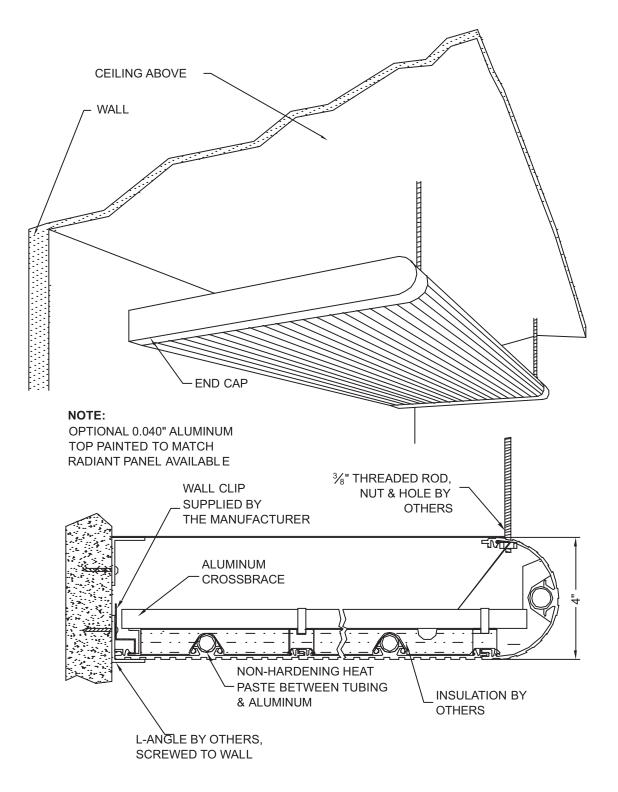
OPENING FOR RADIANT PANEL OBTAINED FROM L-7.

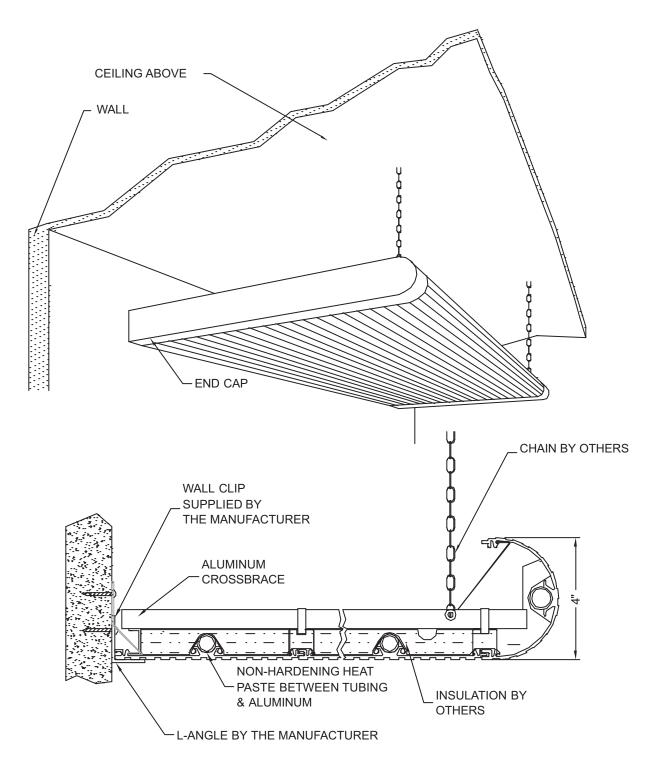


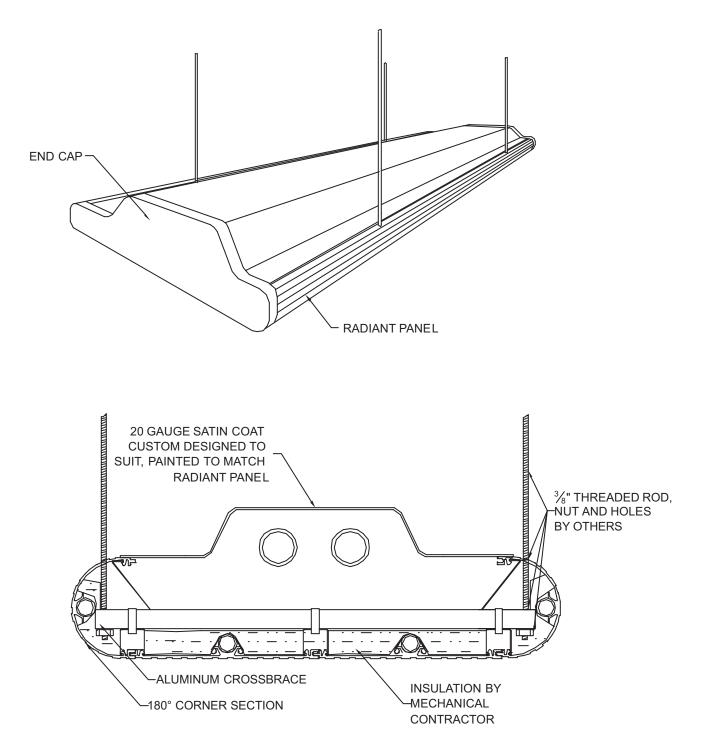


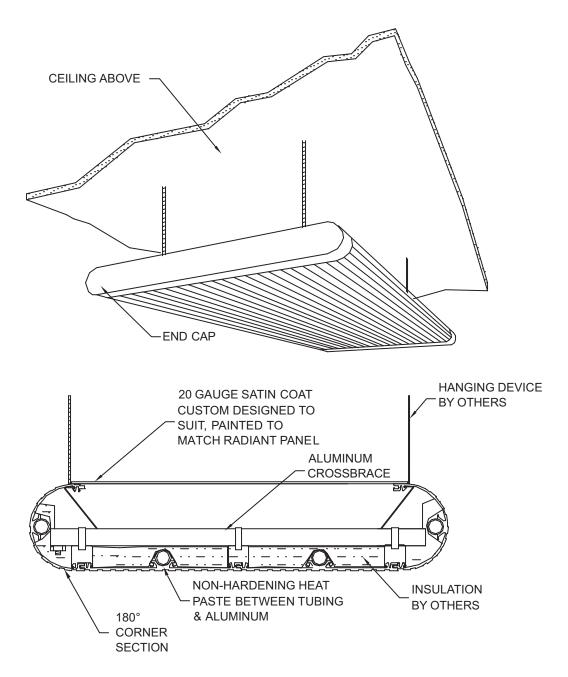


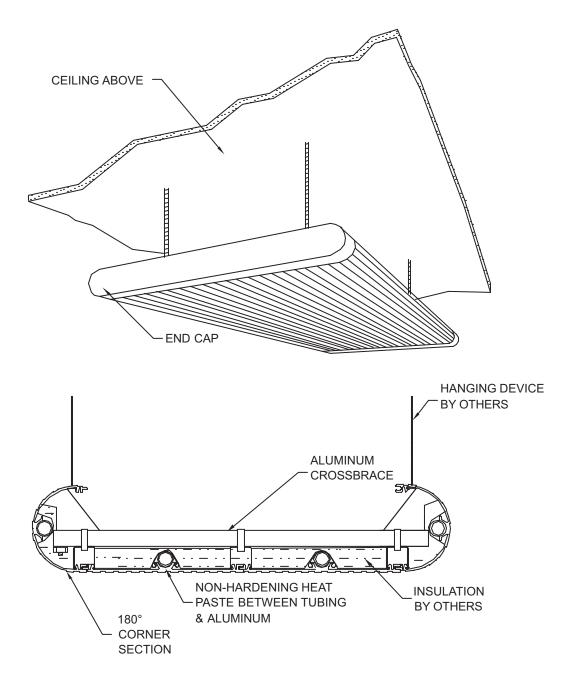


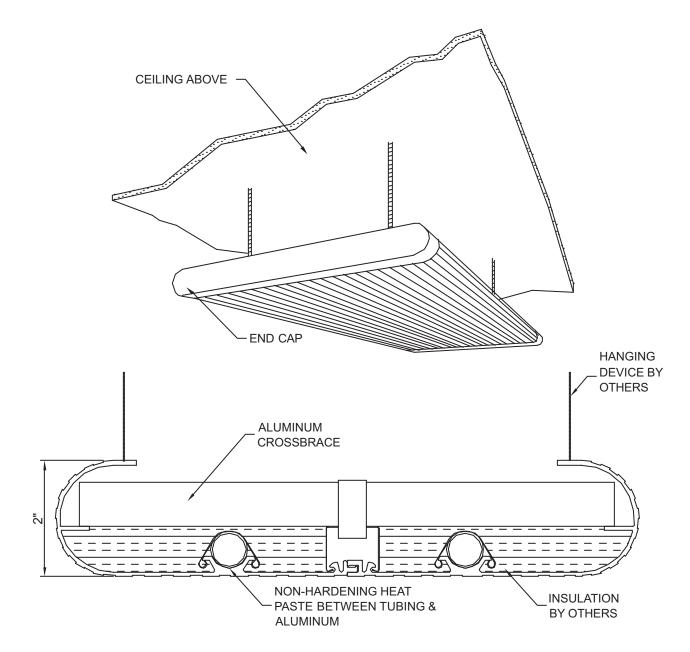

HANGING INDUSTRIAL LINEAR PANEL

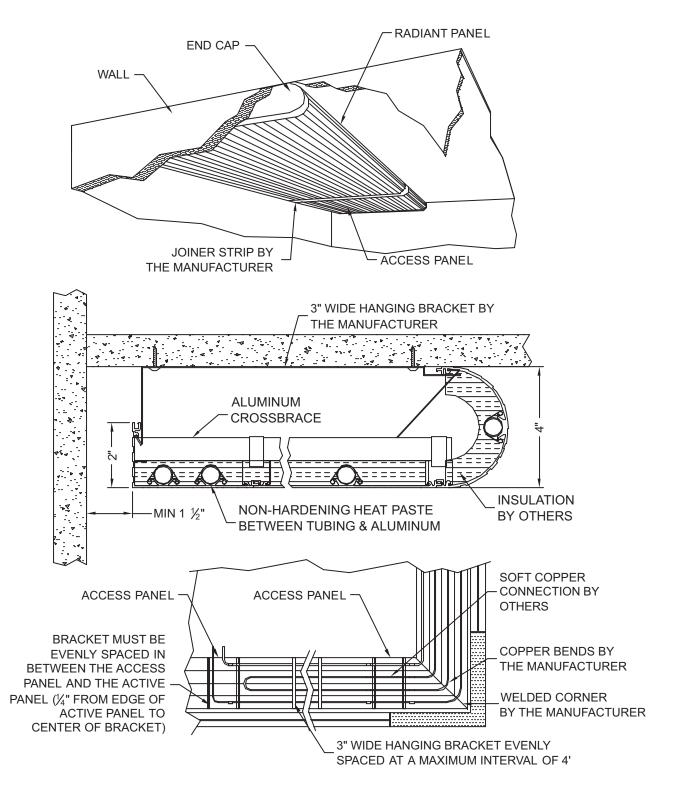




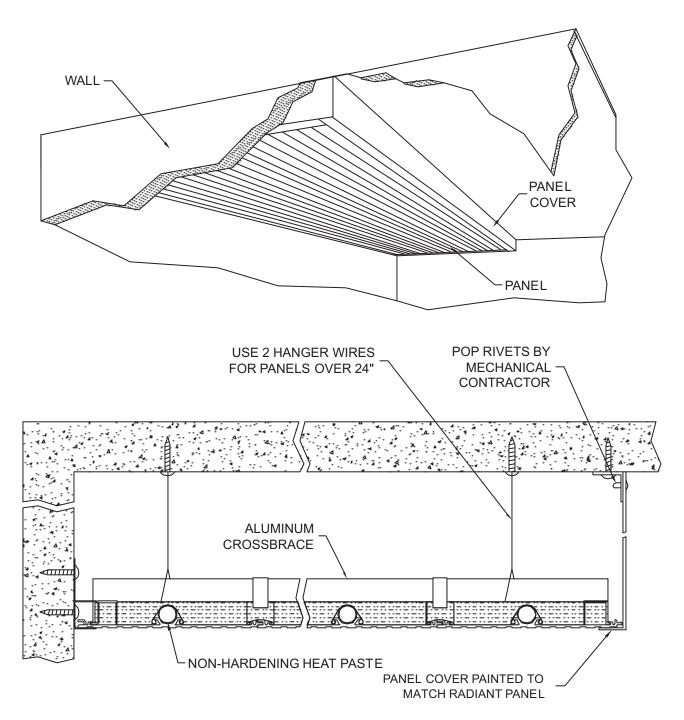



ENCLOSED LINEAR PANEL IN EXPOSED AREA

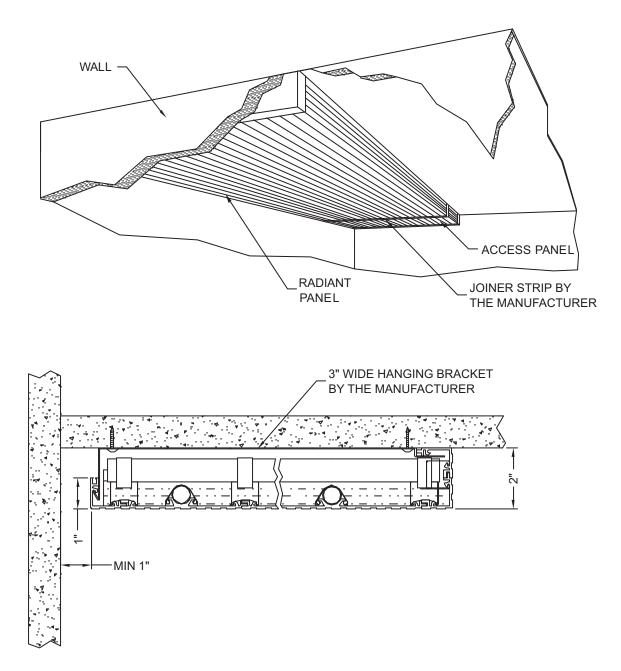


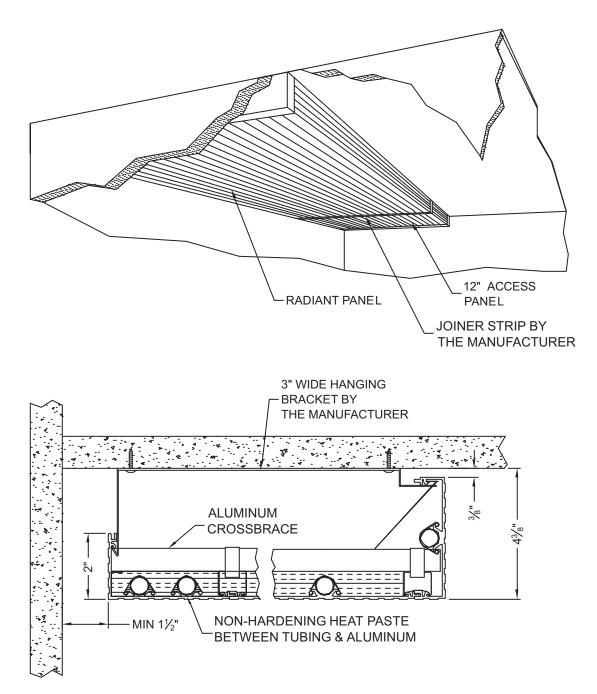


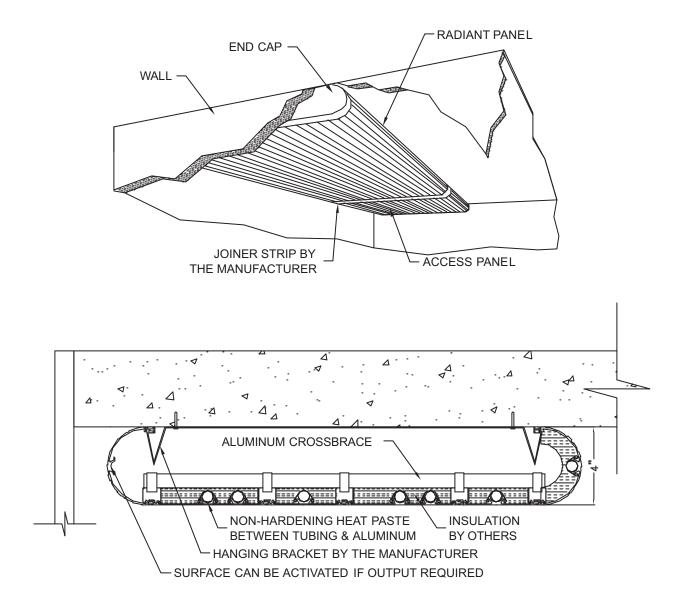
WALL MOUNTED LINEAR PANEL FOR GYMNASIUM

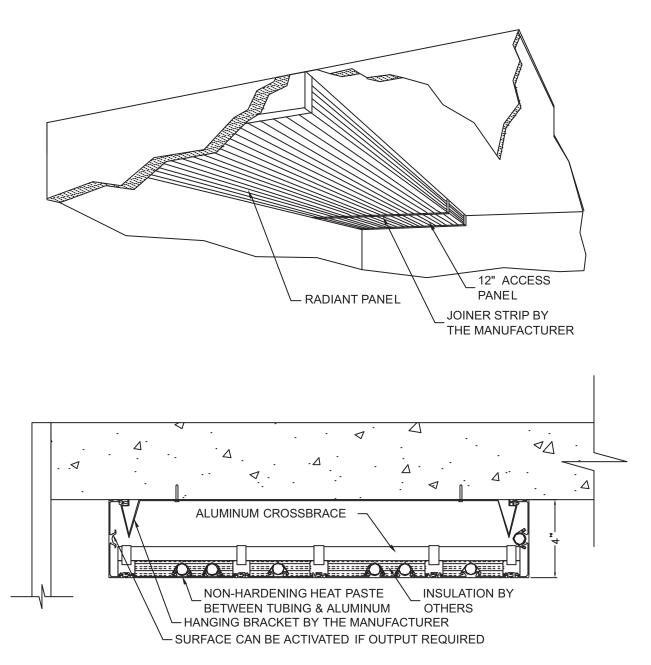


CLEARANCE FOR MAINS IS NOT REQUIRED

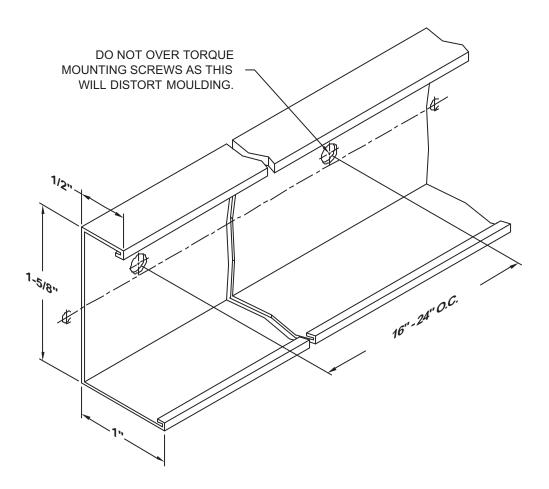




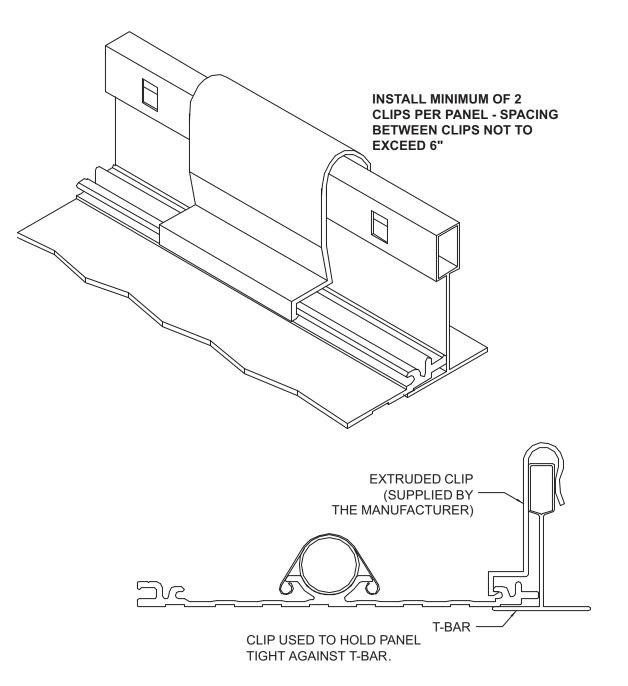




SURFACE MOUNT WITH 4" BULLNOSE



SURFACE MOUNT WITH 4" CORNER


PERIMETER CHANNEL ANGLE

Linear Radiant Panel

T-BAR CLIP

INSTALLATION INSTRUCTIONS

LINEAR RADIANT HEATING PANELS ARE FINISHED WITH STANDARD WHITE POLYESTER POWDER COATING. HOWEVER, THE PANEL SURFACE MUST NOT COME IN CONTACT WITH THE BARE SKIN. PERSPIRATION OR GREASE FROM AN UNGLOVED HAND CAN POTENTIALLY LEAVE A MARK ON THE PANEL.

INSTALLATION PERSONNEL MUST WEAR CLEAN WHITE GLOVES WHEN HANDLING THE RADIANT PANELS.

USE A HEAT PAD BETWEEN RADIANT PANEL AND COPPER PIPE WHEN MAKING SOLDER CONNECTION. EXCESSIVE HEAT CAN DAMAGE THE PAINT FINISH.

Installation, Operation & Maintence Instructions

Installation

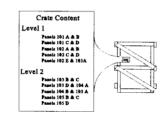
This booklet will provide you with detailed instructions for the installation of Linear Radiant Panels. Not all the following steps will be necessary for all applications. However, this will give you an idea of the maximum amount of work required for a radiant panel installation.

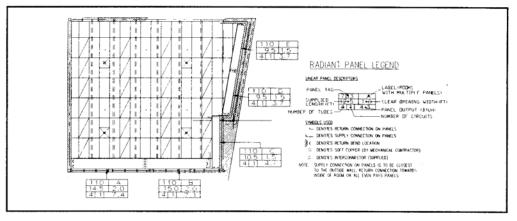
Radiant heating panels are finished with electrostatic powder paint. However, the panel surface must not come in contact with bare skin. Perspiration or grease from an ungloved hand can potentially leave a mark on the panel.

CAUTION

Installation personnel must wear clean white gloves when handling radiant panels.

CAUTION


Use a heat pad between radiant panel and copper pipe when making solder connection. Excessive heat can damage the paint finish.


SUPPLIES

With every job, the following will be supplied:

- Radiant Panels supplied crated in a logical manner (i.e. crated per floor or per room, etc.). See Fig. 1.
- Detailed shop drawings which show a legend that provides information about the different radiant panels found on the project (see Fig. 2). The numbering for the panels will be matched on the back of each panel. This will ensure quick and easy unpacking of the panels to the proper rooms.

Figure 2: Shop Drawing Detail

Linear Radiant Panel

- Straight interconnectors (See Figure 3) for connections between panels.
- White gloves for installation.
- Spray bomb for any touch-ups.

Figure 3: Interconnector

INSTALLATION PROCEDURE

When installing radiant panels, you should have both the mechanical piping plan and the radiant panel shop drawing. Before starting with the installation, please familiarize yourself with the panels and their location by reviewing both drawings.

Remember that when coming in contact with the panels you should always be wearing the white gloves provided for that purpose.

UNPACKING

The crates will be sent to the job site. Once on site, you will need to:

- 1. Open up the crates to gain access to radiant panels. Note that the radiant panels are bundled together in groups of two.
- 2. Follow the numbering system to bring the appropriate panels to the designated rooms.

MEASURING

The panels will arrive on site cut to the length given to the manufacturer and with expansion allowance. If the finished wall to wall measurement was supplied to the manufacturer, the panels will be cut to size when delivered. This means that the mechanical contractor will not need to measure and cut the panels. However, since most of the measurements will have been taken prior to the walls being put up, some of the panels will be sized to fit from stud to stud and will therefore require some cutting on site.

In anticipation of the cutting operation, the manufacturer will have held back the coil and the cross brace approximately 6" on one of the end panels in a run or on each panel if only one panel spans the wall to wall dimension.

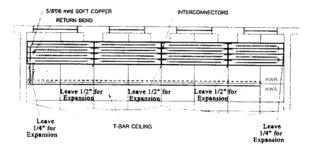
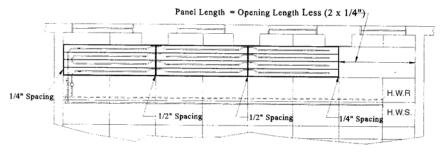

To determine the quantity of material to cut from the panels, the opening should be measured **from** wall to wall at the panel height (see Fig. 5). Remember that in order to allow for expansion of the panels you must also remove 1/2" per panel. This means that for a room containing a series of 4 panels (as shown in Fig. 6), you will need to cut an additional 2" to allow for expansion.

Figure 5: Measurement Height

Figure 6: Installation of Radiant Panels in Series

Figure 6. Installation of National Fahers in Series



CUTTING

To cut the radiant panels to the required measurement, follow these steps

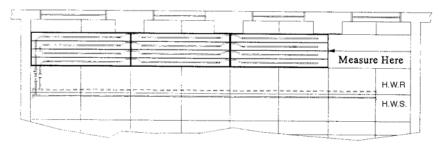

1. Install all but the last panel. See Fig. 7.

Figure 7: Installing Linear Radiant Panels

2. Measure the length of panel required. See Fig. 8.

Figure 8: Measuring for the Last Linear Radiant Panel

- 3. Allow 1/4" on either side of each panel in series to allow for expansion.
- 4. Lay the panel to be cut with the finished surface facing up.
- 5. Protect the finished surface before cutting.

6. Using a circular saw with a carbide tipped blade, or a jigsaw with an aluminum cutting blade, cut the panel.

INSTALLING IN T-BAR CEILINGS

To install the panels in a t-bar ceiling, you must:

1. Ensure that the female edge of the radiant panel is

positioned toward the exterior wall. See Fig. 9.

2. Lift the panel into place,

making sure that 1/4" spacing is left

at both ends of the panel for expansion.

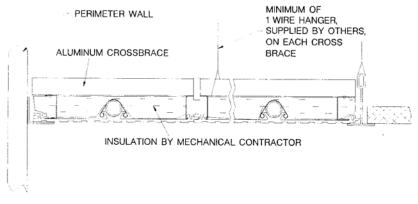

3. Attach at least one tie wire from each cross brace to an anchor point found above the panel (for horizontal linear panels). See Fig. 10.

Figure 9: Female Edge

Figure 10: Tie Wire Location

4. Make all copper connections (supply and return or interconnectors). To solder the copper connections to the radiant panels, follow these steps:

a. Take off the clips holding the copper down using a nail slipped in the clip's loop.

b. Roll a discarded piece of copper under the panel's piping in order to raise it high enough for soldering.

- c. Place a piece of heat sink material between the panel and the pipe to protect the panel.
- d. Solder the copper connection to the piping.
- e. Clip the piping back into place.

5. Perform an air pressure test by following the recommended procedure found in the specifications (if required).

6. Install the insulation with the foil side down. The insulation will need to be cut to length before being installed on the back of the panels.

INSTALLING IN GYPROC CEILINGS

To install radiant panels in a gyproc ceiling, you must:

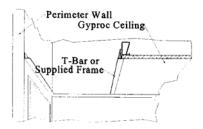
1. Install the supplied frame around the opening in the gyproc. See Fig. 11. Manufacturer will supply one piece frame if called for in radiant panel specifications. Otherwise, framing material supplied and installed by ceiling contractor. Note: provisions must be made for access to back of panel for hard piped connections, for plastic tube (if specified), connections made with the panel below the ceiling, and excess tube placed back up above the ceiling.

2. Ensure that the female edge of the radiant

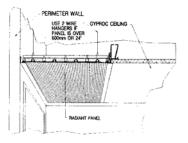
- panel is positioned toward the exterior wall. See Fig. 9.
- 3. Lift the panel into place.

4. Attach at least one tie wire from each cross brace to an anchor point found above the panel (for horizontal linear panels).

5. Make all copper connections (supply and return or


interconnectors) through the acess opening.

To solder the copper connections to the radiant panels, follow these steps:


a. Take off the clips holding the copper down using a nail slipped in the clip's loop.

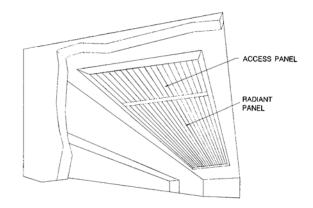
b. Roll a discarded piece of copper under the panel's piping in order to raise it high enough for soldering.c. Place a piece of heat sink material between the

Figure 11: Frame Installation in Gyproc

Figure 12: Linear Radiant Panel in Gyproc

Linear Radiant Panel

panel and the pipe to protect the panel.


- d. Solder the copper connection to the piping.
- e. Clip the piping back into place.

6. Perform an air pressure test by following the recommended procedure found in the specifications (if required).

7. Install the insulation with the foil side down. The insulation will need to be cut to length before being installed on the back of the panels.

8. Close up the remaining opening with the use of the supplied inactive access panel (if provided) as shown in Fig. 13.

Figure 13: Radiant Panel With Access Panel

MISCELLANEOUS

Venting

Once the panels are installed, the piping system must be vented in order to avoid air locking.

Cleaning & Touch-up

In the event that a panel has been dirtied, the panel's face can be cleaned by using an off the shelf mild household cleaner such as Fantastik or soapy water.

If the panels have been scratched, use the supplied spray paint to touch up the panel's face. A few steps should be followed in order to touch up radiant panels:

- 1. Sand the affected area to remove any roughness.
- 2. Wipe the area clean.
- 3. If using a cleaner to clean the surface, let the area dry before applying the paint.
- 4. Holding the spray can 6 to 12 inches away from the panel's surface, apply the paint in light coats.
- 5. Let the paint dry before handling (Approximately 20 minutes).
- 6. Repeat paint application until the scratch is covered.

Repainting

The type of powder coating used for radiant panels is an ant-graffiti paint and unless retouching a small area, paint will not adhere to the powder coated face of the panels. Therefore, for applications where an entire panel must be repainted either in white or in a different colour, please contact your nearest representative.